Cervical Carotid Aneurysm Presenting As Recurrent Cerebral Ischemia with Head Turning

ROGER W. COUNTEE, M.D., T. VIJAYANATHAN, M.D., AND CARL BARRESE, M.D.

SUMMARY Extracranial carotid artery aneurysms are uncommon lesions with protean manifestations. This report describes a patient in whom the presenting symptom of a right carotid aneurysm was recurrent right hemisphere ischemic attacks when he turned his head to the left. The angiographic and operative findings explained the mechanism(s) of his symptoms. The importance of such symptoms is that they should suggest a mechanical etiologic and that the probability of a surgically correctable lesion exists. Arteriography is the only reliable means of making a definitive diagnosis and should be considered early in the evaluation.

Stroke Vol 10, No 2, 1979

ANEURYSMS of the carotid artery in the neck are an uncommon disorder, but not rare.1-3 Although the most frequent presenting complaint in patients with these lesions is an uncomfortable mass in the neck,4 the clinical picture may be quite variegated. Headache, neck and facial pains,5,6 subjectively audible bruits,7,8 hoarseness,9 upper airway obstruction,4,10 dysphagia,11,12 hemoptysis, and epistaxis,13 have all been reported as initial symptoms of these lesions. Neurological symptoms are also not uncommon as initial presentations. Frank stroke, amaurosis fugax, transient cerebral ischemia, dizziness, syncope, and coma have been described.1,2,4,8,10,12,14,15 We have recently encountered a patient in whom recurrent transient ischemic attacks of the right hemisphere, precipitated by turning the head to the left, was the presenting symptom of a dissecting aneurysm of the cervical internal carotid artery. To our knowledge, this is the first report in the English literature of such a presentation. Our case is described. The mechanism and the importance of this uncommon presentation for this uncommon disorder is discussed.

Case Report (W.T.)

A 69-year-old, hypertensive, white male was admitted to the hospital in March, 1977, for complaints of recurrent episodes of dizziness and fainting spells, associated with numbness and weakness of his left face and arm for one year previously. These attacks were typically precipitated by turning his head to the left and would last for only seconds to minutes. The patient's complaints had initially been felt to represent orthostatic hypotensive episodes. However, there had been no improvement in his symptoms after his anti-hypertensive medications had been stopped. He had been given a diagnosis of "Atypical TIAs" until he presented with the sudden onset of a left hemiparesis one week prior to his admission to our hospital. The left hemiparesis had lasted almost 24 hours and had also been precipitated by turning his head to the left.

On admission to the hospital the patient was found to be a generally healthy male with blood pressures of 180/100 in each arm. There was a mild hyperreflexic left hemiparesis and a right carotid thrill and bruit. No palpable masses in the neck were noted. The patient would allow his head to be turned only slightly to the left by the examiner and cautiously maintained a "face-forward" position. The remainder of the examination was unremarkable. Three days after admission, the patient suddenly became densely paretic in the left face and arm when he inadvertently turned his head to the left while taking a shower. He markedly improved over the next 72 hours and arteriography was performed.

Complete cerebral angiography, using a femoral catheter technique, revealed a lobulated and dissecting aneurysm at the origin of the right internal carotid artery (fig. 1). With the patient's head turned cautiously to the left, just short of the point past which he knew that his symptoms would be precipitated, a repeat right common carotid injection was performed. In this oblique view the lumen of the proximal right internal carotid artery was seen to be almost 99% obstructed by the dissecting aneurysm (fig. 2). Distal to the obstruction in the neck the carotid was well opacified and normal in appearance throughout. The left carotid and both vertebral arteries were normal at their origins and throughout their respective courses. There was no demonstrable contribution from these vessels to the right internal carotid distribution. The following day the right carotid bifurcation was explored. A thin-walled, bluish-tinged, 3.0 X 4.0 cm aneurysmal dilatation of the distal common carotid and proximal internal carotid arteries was found (fig. 3). A large fungating, ulcerative, and partially calcified atheroma was found to bulge into the lumen of the internal and common carotid arteries circumferentially. A subintimal dissection had begun along the posterior wall of the internal carotid ostium with resulting aneurysmal dilatation of its walls and rostral progression of the dissection into the proximal 2-3 cm of the vessel. The lumen of the internal carotid was severely compromised. A common carotid to internal carotid shunt was utilized intraoperatively while an endarterectomy was performed. The aneurysmal sac was excised and an angioplastic repair of the vessel was performed. No grafts were necessary.

The patient's postoperative course was uneventful and he went home on the tenth postoperative day. Upon discharge he was neurologically intact save for a...
ISCHEMIC ATTACK AS CAROTID ANEURYSM SYMPTOM/Countee et al.

FIGURE 1. Preoperative right AP and lateral carotid angiogram. Lobulated dissecting aneurysm of the stenotic internal carotid artery is seen.

mild left central facial paresis and a left side reflex preponderance. Postoperative angiography before discharge demonstrated good patency and normal flow through the right carotid (fig. 4). The patient has remained free of symptoms to date and enjoys an unrestricted range of motion of his neck.

Discussion

The effects of head turning upon the vertebral-basilar circulation are well documented. The effects of head turning on internal carotid artery flow, however, are less well appreciated. It has been clearly demonstrated in cadavers, as well as in patients, that turning the head to one side may obstruct flow in the contralateral internal carotid artery. The mechanism by which carotid artery flow is altered by head rotation in these situations is thought to result from extrinsic compression of the vessel by the lateral mass of the atlas. This may sometimes result in intimal fractures and subsequent thrombosis of the vessel, and possibly aneurysm formation as well.

In our patient the clinical course of transient cerebral ischemia precipitated by head turning is explained by the angiographic and operative findings. The firm mass of the aneurysm, which in our case involved the origin of the internal carotid artery well below the atlas, compressed the already severely compromised lumen of the vessel when the ipsilateral sternocleidomastoid muscle contracted. In view of the fungating and ulcerated luminal surface of the atheromatous plaque, it is also possible that embolic debris was liberated when the aneurysm fundus was compressed. Compression by and/or embolism from the aneurysm itself best explains the symptoms in this case rather than atlantal compression. The complete relief of symptoms after surgery lends further support to this contention.

Aneurysms of the extracranial carotid arteries may be located on the common carotid artery, its bifurcation, or on the internal carotid artery from its origin up to the base of the skull. At each site various shapes and sizes may occur which probably accounts for the various signs and symptoms of this disorder. Atherosclerosis and trauma are now considered to be the most common causes of these lesions, and in most cases they are amenable to surgical correction. Although rupture of these aneurysms is apparently uncommon, neurological catastrophes are frequent sequellae. Moreover, in the case of the dissecting
carotid aneurysm, the progression of signs and symptoms may increase at an alarmingly rapid pace.5, 6

Our experiences with this patient, combined with our review of the literature regarding these lesions, lead us to several conclusions. In patients with internal carotid ischemic attacks which are precipitated by head turning, a mechanical etiology should be highly suspect. The cause of the symptoms in these patients may be the result of extraluminal compression of the carotid artery by the lateral mass of Cl, or possibly by an aneurysm of the vessel in the neck. Carotid sinus massage,24, 25 deep palpation of the neck, and vigorous head turning in the evaluation of these patients is certainly contraindicated. These lesions causing mechanical compression of the carotid artery are most often amenable to surgical correction. However, if unrecognized and untreated the potential for neurological catastrophe is great. Arteriography is the only reliable means of making a definitive diagnosis and should be considered early in the evaluation of patients with these symptoms.

Acknowledgments

This work was supported in part by NIH Biomedical Research Grant No. 5 S07 RR05393. We gratefully acknowledge the secretarial assistance of Mrs. Y. Knight.

References

12. Shipley AM, Winslow N, Walker WW: Anusmy of the cervi-
cal portion of the internal carotid artery: An analytical study
of cases recorded in the literature between August 1, 1925 and
13. Van Rensburg LC: Anusmy of the internal carotid artery pre-
sent as a perintonsilar abscess. S Afr Med J 38: 567-572,
1964
14. Boddie HG: Transient ischemic attacks and stroke due to extra-
802-803, 1972
15. Rhodes EL, Stanley JC, Hoffman GL, Cronenwett JL, Fry WJ:
Anusmies of extracranial carotid arteries. Arch Surg 111:
339-343, 1976
Stroke 8: 594-597, 1977
17. Toole JF, Tucker SH: Influence of head position upon cerebral
18. Hardesty WH, Roberts B, Toole JF, Royster HP: Studies of car-
1960
19. Boldrey E, Maas L, Miller ER: Role of atlantoideal compression
in etiology of internal carotid thrombosis. J Neurosurg 13:
127-139, 1960
20. New PJP, Monose KJ: Traumatic dissection of the internal
carotid artery at the atlanto-axial level, secondary to non-
Bilateral anusmies of the cervical internal carotid arteries.
Neuroradiol 14: 271-273, 1978
22. Ojemann RG, Roberson GH, Fisher CM: "Spontaneous" dis-
section of the cervicocerebral arteries. Stroke 8: 15, 1977
23. Gelber R, Kiat K, Khaneja S, O'Malley G, Stillman RM, Saw-
yer PN: Repair of extracranial carotid artery anusmies. Arch
Surg 112: 91-93, 1977
of the diagnostic reliability and prognostic significance. Neu-
rology (Minneap) 13: 601-606, 1963
25. Useu CT, Eisenman JI, Stemmer EA: Problem of dizziness
and syncope in old age: Transient ischemic attacks versus
hypersensitive carotid sinus reflex. J Am Ger Soc 24: 126-135,
1976

Neurologic and Cardiovascular Effects of Hypotension in the Monkey
DENNIS J. SELKOE, M.D. AND RONALD E. MYERS, M.D., PH.D.

SUMMARY Thirty monkeys were exposed to controlled systemic hypotension of different magnitudes and
durations to determine factors leading to brain injury or cardiovascular failure. Fourteen monkeys developed
brain injury. Of these, 6 survived indefinitely and 8 were sacrificed or died within 12-62 hours due to neurologic
deterioration accompanied by respiratory failure. Sixteen animals did not develop brain injury, but 9 of these
died within 24 hours from documented cardiovascular failure while the remaining 7 survived indefinitely. A
highly reproducible threshold for the development of brain injury was found at a mean arterial blood pressure
(MABP) of 25 mm Hg. Maintenance MABP was <25 mm Hg in 13 of 14 lesioned monkeys and >25 mm Hg in
15 of 16 non-lesioned monkeys. Maintenance MABP averaged 20.1 ± 1.1 mm Hg in lesioned and
32.1 ± 1.7 mm Hg in non-lesioned animals (p < 0.001). Among the non-lesioned animals, death from delayed
cardiovascular failure ensued when MABP was maintained between 27 and 35 mm Hg for 90 min or longer.
Animals exposed to this range of hypotension for <90 min or to MABP exceeding 35 mm Hg for as long as 3 h
survived intact. EEG changes occurring during hypotension most accurately predicted neurologic outcome.
The threshold MABP required to produce cerebral electric silence was 21-22 mm Hg. Monkeys developing
markedly impaired EEG (flat or less than 1 Hz) had an increased mortality. Monkeys recovering EEG
flattening during hypotension had an increased mortality. Changes in acid-base state, common carotid artery
blood flow, and cerebral uptake of glucose and oxygen during hypotension also correlated with neurologic and cardiovascular
outcome. Hypoxemia and hypercarbia were not contributory factors in the production of brain injury in this
study.

Stroke, Vol 10, No 2, 1979

THE RELATIVE contributions made by hypoxemia, systemic acidosis, hypotension associated with reduced cerebral blood flow, and altered brain intermediary metabolism to the development of brain injury as a consequence of hypoxic exposure remain uncertain. This lack of precise knowledge of the pathogenesis of hypoxic brain injury is particularly unfortunate since exposure to hypoxia constitutes one of the common causes of brain injury and death in man.

We have considered 3 questions of fundamental importance to the clinician and experimentalist alike. First, can hypotension and reduced cerebral blood flow be studied independently and assigned a role in the development of brain injury separate from the hypoxemia and systemic acidosis that commonly accompany hypotension? Second, can the threshold value of systemic hypotension that leads to brain injury be delineated with precision? Finally, why does exposure to hypotension cause brain injury in some instances and death from cardiogenic shock in others?
Cervical carotid aneurysm presenting as recurrent cerebral ischemia with head turning.
R W Countee, T Vijayanathan and C Barrese

Stroke. 1979;10:144-147
doi: 10.1161/01.STR.10.2.144

Stroke is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1979 American Heart Association, Inc. All rights reserved.
Print ISSN: 0039-2499. Online ISSN: 1524-4628

The online version of this article, along with updated information and services, is located on the
World Wide Web at:
http://stroke.ahajournals.org/content/10/2/144

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in
Stroke can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office.
Once the online version of the published article for which permission is being requested is located, click Request
Permissions in the middle column of the Web page under Services. Further information about this process is
available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to *Stroke* is online at:
http://stroke.ahajournals.org//subscriptions/