ACUTE VERTEBROBASILAR CI/Jones et al.

References

Bilateral Nothnagel Syndrome

Clinical and Roentgenological Observations

IRAJ DERAKHSHAN, M.D., MANUCHEHR SABOURI-DEYLAMI, M.D., AND BENJAMIN KAUFMAN, M.D.

SUMMARY The clinical features of a patient with bilateral oculomotor palsy, ataxia, disturbance of memory, and hypokinesia are described. Pneumography and CT scanning showed dilation of the posterior portion of the third ventricle, indicating involvement of the postero-medial thalamic structures. The relation of this finding to the patient's amnesia and hypokinesia is briefly discussed. It is concluded that the patient suffered an infarction within the region served by penetrating branches which arise from the cephalad end of the basilar artery, probably including the mesencephalic artery.

ACUTE BILATERAL THIRD NERVE palsy of midbrain origin is rare. This report concerns the clinical features of a patient who had sudden development of bilateral ophthalmoplegia due to bilateral third nerve paralysis, ataxia, hypokinesia, and memory disturbance. The patient was studied with computed tomography (CT), pneumoencephalography, and angiography.

The patient was a 50-year-old farmer, previously in good health. Following the acute onset of vertigo and vomiting (lasting 1 to 2 hours) he became unresponsive and remained so for about 48 hours. Upon regaining consciousness, he was unable to open his eyes or to keep his balance while walking. Vomiting and vertigo did not recur. There was no history of fever, trauma or cardiac disorder. He was admitted to the University Hospitals of Cincinnati Medical Center, 231 Bethesda Ave., Cincinnati, OH 45267.

Reprints: Dr. Derakhshian, Dept. Neurology, University of Cincinnati Medical Center, 231 Bethesda Ave., Cincinnati, OH 45267.
hospital. Past memory was intact and he could recognize his family and close relatives. He could not do simple arithmetic. His judgment was intact, as was his awareness of his disabilities. He was calm but slow in responding to verbal inquiries. He would sit in bed, eyes closed for hours, uncomplaining. When he was lying in bed, it was difficult to ascertain whether he was awake or asleep as he was unable to open his eyes. His blood pressure and general physical examination were unremarkable. His speech was slurred but he did not have dysphasia. Visual fields were normal in both eyes on confrontation testing and bilateral simultaneous stimulation. His optic fundi were normal. Bilateral complete third nerve palsy was evident as both eyes were abducted to the extremes (fig. 1). There was a sustained horizontal nystagmus when he looked at an object at the extreme right or left. No other ocular movement was possible, either voluntarily or by changes in head position. His pupils were round and unequal (right 5 mm, left 3.5 mm). Both pupils were non-reactive to light and accommodation. Caloric testing with ice water induced appropriate nystagmus in the ipsilateral eye with only occasional (and irregular) participation of the other eye which retained its original (abducted) position. Bilateral simultaneous caloric testing with ice water failed to induce any change in eye position. The remaining cranial nerves functioned normally.

Motor and sensory examination revealed no abnormality. Stereognosis and 2-point discrimination tests were normal. Finger-to-nose and heel-shin tests elicited an intention tremor. His gait was ataxic, wide-based, and lurching. All tendon reflexes were present and normal and plantar reflexes were flexor. He had urinary incontinence. Ten days after admission he suffered a right-sided stroke with mild hemiparesis and motor aphasia from which he recovered. No other changes developed in 2 months of hospitalization.

Complete hemogram, glucose tolerance test (4 hour), serum cholesterol, blood urea nitrogen, complete evaluation for collagen diseases, liver function tests, serum VDRL, and electrocardiogram were all normal. Cerebrospinal fluid cell count, VDRL, protein and glucose contents were also normal. Eight-channel electroencephalography (on 2 occasions) showed a normal pattern with a well-organized and well-developed 7–8 cycle/sec activity. On vertebral angiography an area of narrowing of the right vertebral artery was observed and interpreted as due to atheromatous disease. Pneumoencephalography showed widening of the posterior portion of the third ventricle (fig. 2), and widening of the third ventricle was corroborated by CT scan. Neither of the latter 2 tests showed cortical atrophy.

Comment

The association of unilateral oculomotor palsy of midbrain origin with contralateral ataxia is referred to as the Nothnagel Syndrome. Historically, this is based on Nothnagel's remark in 1879 in a review of clinico-pathological data (available to him and reported by others) of lesions involving corpora quadrigemina. The following is a translation of Nothnagel's concluding remarks pertaining to the title of the present article:

"Bilateral, symmetrical lesions of specific branches of the oculomotorius indicates involvement of lamina quadrigemia, especially if there is no concomitant alternate paralysis of extremities. ... It appears that with lesions of posterior gemini there are disturbances of balance and coordination.
which are very similar to those seen with lesions of the cerebellum. However, this point is not indisputable. The close proximity of the oculomotor nuclear complex to the dendato-rubro-thalamic fibers (within the midbrain tegmentum) constitutes the accepted anatomic basis of this semiological association (see below). Detailed clinical descriptions of this syndrome are rare, partly due to the rarity of its occurrence. Kubik and Adams\(^\text{10}\) reported 2 patients with partial bilateral third nerve palsy of mesencephalic origin due to infarction. Anderson and Jaros\(^\text{11}\) briefly described the clinico-pathological findings of one patient in their discussion of a series of 35 patients with vertebrobasilar disease. Masucci's\(^\text{5}\) series consisted of 6 patients but bilateral oculomotor palsy was incomplete in all of his patients and ataxia was present (or mentioned) in 2 patients. The corticospinal tract was involved in all but one patient but pathologic data were not available. Memory function was not specifically described in any of the above reports.

More recently, Shutt, David and Smith\(^\text{6}\) reported the clinical findings of 2 patients with "complete" bilateral third and fourth nerve palsy of vascular cause. Judging from the photographs, however, their second patient seems to have retained some function of both medial rectus muscles. Both patients had ataxia, dysarthria and amnesia and the latter symptoms apparently lasted only a few days. The nature of memory disturbance in these 2 patients was not described. Contrast studies were not performed on these patients.

Although the occurrence of cortical cerebellar damage in our patient remains a possibility, the cerebellar findings can also be explained by tegmental midbrain damage. Partial ophthalmoplegia, ataxia and dysarthria in the absence of a cerebellar lesion, has been reported in patients with vascular lesions involving the region under consideration.\(^\text{7-9}\) The probable pathologic basis of such an association was mentioned above.

The memory disorder in the present case was predominantly that of retaining (or recalling) recent information, indicating possible additional involvement of thalamic structures.\(^\text{10}\) Pathogenesis of hypokinesia and memory disturbances, with or without an associated eye movement disorder, has been recently reviewed.\(^\text{11}\) Bilateral involvement of dorsomedial thalamic nuclei and periaqueductal gray matter appeared to be the area of the brain commonly involved in these patients.

Dilatation of the posterior third ventricle, shown by pneumoencephalography, was present in our patient and was confirmed by CT scanning. The latter finding is consistent with involvement of the dorsomedial thalamus. The sudden onset (preceded by vertigo and vomiting) and the angiographic finding both point to a probable cerebral infarction. The location of the ischemic insult falls within the region supplied by the median (penetrating) branches of the basilar artery arising from its cephalad end, probably including the mesencephalic artery.\(^\text{12}\)

In the absence of pathological data, comments regarding the nystagmus and urinary incontinence remain hypothetical. The occurrence of nystagmus in the presence of an apparently complete third nerve palsy can be explained by phasic contraction, followed by relaxation, of the unopposed lateral rectus muscle in each eye. The urinary incontinence was difficult to ascribe to the presence of a lacunar state in the absence of spasticity, gagenhalten or other pseudobulbar findings. Based on the pervading hypokinesia, reflected by the patient's verbal and nonverbal behavior, it was our belief that the incontinence was probably due to the patient's inability to voice his needs.

References
Bilateral Nothnagel syndrome. Clinical and roentgenological observations.
I Derakhshan, M Sabouri-Deylami and B Kaufman

Stroke. 1980;11:177-179
doi: 10.1161/01.STR.11.2.177
Stroke is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1980 American Heart Association, Inc. All rights reserved.
Print ISSN: 0039-2499. Online ISSN: 1524-4628

The online version of this article, along with updated information and services, is located on the
World Wide Web at:
http://stroke.ahajournals.org/content/11/2/177

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Stroke can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Stroke is online at:
http://stroke.ahajournals.org//subscriptions/