MICROCIRCULATORY CHANGES may play an important role in the evolution of a cerebral infarct. Much of the information regarding these changes has been derived from morphological and regional cerebral blood flow (CBF) studies. These studies, however, have not answered important questions regarding the possible development of microcirculatory obstruction to the passage of erythrocytes or the separation of plasma and erythrocyte flow (i.e., plasmapheresis) during the early phases of cerebral infarction. The objectives of this investigation were to study plasma and erythrocyte transit in an area of acute focal cerebral ischemia and define their relationship to developing microcirculatory obstruction as determined by morphological techniques.

Methods

Eighteen adult cats (mean weight 4.0 kg) were anesthetized with ketamine hydrochloride (40 mg/kg subcutaneously). Catheters were inserted into the right femoral artery and vein. A tracheostomy was performed through a longitudinal midline incision and mechanical ventilation instituted. Skeletal muscle paralysis was achieved with d-tubocurare (1.5 mg/kg/IV). A small catheter was inserted into the right carotid artery through the lingual artery for subsequent injection of the isotopes. Arterial blood gases were determined when necessary in order to maintain the Paco₂ in the 30–35 torr range. Arterial blood pressure was monitored continuously. A heating pad was placed over the trunk to keep the core temperature at 37°C. The head of each cat was shaved and fixed in a head holder which allowed unobstructed access to the right orbit. The orbital contents were evacuated and a 4 mm craniectomy, continuous with the superolateral margin of the optic foramen, was performed. Using microsurgical techniques, the dura and arachnoid membranes were opened. The proximal segment of the right middle cerebral artery (MCA) was carefully dissected from the adjacent structures in preparation for application of a miniature aneurysm clip. The scalp and temporalis muscle were then removed bilaterally from the skull overlying the Sylvian cortex.

Aluminum and Erythrocyte Transit

An index of plasma flow was determined by measuring the transit of Iodine-131 (¹³¹I) albumin in the right MCA territory. A collimated 1.5 cm sodium iodide crystal, recessed 5.0 cm, was applied to the skull overlying the Sylvian cortex. A second detector was placed on the skull overlying the left Sylvian cortex. The ¹³¹I window (364 keV) was determined with a multichannel analyzer. The ¹³¹I albumin (0.5 ml containing 100 μCi) was rapidly injected into the right internal carotid artery through the lingual artery catheter. Measurements were recorded on a paper strip recorder. An index of erythrocyte flow was similarly determined by measuring the transit of Technetium-99 (⁹⁹Tc) labeled erythrocytes. Binding of the ⁹⁹Tc to erythrocytes from a donor cat was carried out in vitro using the technique described by Schwartz and Kruger. Adequacy of the binding was determined by centrifuging 1 ml of the solution containing the ⁹⁹Tc
labeled erythrocytes and measuring the 99mTc activity in the supernatant and packed erythrocytes using a well counter. Probe placement and measurement were similar to that used for the 131I albumin transit studies. The 99mTc window (140 keV) was determined using a multichannel analyzer. The 99mTc erythrocytes (i.e., 0.5 ml containing 100 µCi) were rapidly injected into the right internal carotid artery through the lingual artery catheter. Measurements were recorded on a paper strip recorder.

Radionuclides were injected immediately before right MCA occlusion and again immediately after. The final injections were carried out at the end of the ischemic period, that is, 1 hour, 3 hours, or 6 hours after occlusion.

Six cats had 131I albumin transit studies only, these included 2 cats with 1 hour occlusion, 2 cats with 3 hours occlusion, and 2 cats with 6 hours occlusion. Six cats had 99mTc erythrocyte transit studies only, these included 2 cats with 1 hour occlusion, 2 cats with 3 hours occlusion, and 2 cats with 6 hours occlusion. A group of 6 cats had both 131I albumin and 99mTc erythrocyte transit studies including 2 cats with 1 hour occlusion, 2 cats with 3 hours occlusion, and 2 cats with 6 hours occlusion. In these animals, the 131I albumin and 99mTc erythrocytes were injected sequentially with a 3 minute waiting period after the first injection.

Perfusion Technique

Thirty minutes before perfusion, sodium fluorescein (i.e., 0.5 ml of a 10% solution) and Evans blue (i.e., 0.5 ml of a 10% solution) were given intravenously. Intraarterial carbon-fixative perfusion was carried out at the end of the ischemic period after completion of the isotop elegations. A midline thoracotomy was performed. The right MCA was reopened by removing the aneurysm clip. This was done to improve delivery of fixative to the ischemic tissue. A large cannula was passed through a left ventriculostomy incision into the ascending aorta and secured with a ligature. The descending aorta was clamped and the right atrium incised. The animals were perfused with 50 ml of isotonic saline followed by a mixture of colloidal carbon (250 ml) and phosphate-buffered formalin (250 ml) at a constant pressure of 120 mm/Hg. The brain of each cat was removed, sliced coronally, and placed in the fixative solution at 4°C for 48 hours.

Examination of the Brains

The coronal brain slices were photographed. The presence or absence of fluorescein and Evans blue was recorded. Shift of midline structures, if any, was measured.

The distribution and intensity of carbon staining was graded according to a previously-described system.\(^1\) Grade "0" indicated normal vascular filling; Grade "1" indicated poor filling, not more than 3 mm in diameter; Grade "2" indicated a large area of improper subcortical filling; and Grade "3" referred to an extensive cortical and subcortical region of impaired filling. The intensity of the zones of pallor were classified as mild, moderate, or severe (table).

The cerebral tissue under the detector probes was prepared for microscopic examination. A series of coronal sections (10µm thickness) at 1 mm intervals were cut from paraffin-embedded slices, stained with hematoxylin and eosin and periodic acid Schiff stains, and examined with a light microscope. A total of 10 sections from each brain were examined.

Neurons were graded according to the severity of the changes present: Grade I — slightly shrunken or swollen neurons with or without cytoplasmic vacuolation; Grade II — moderately shrunken neurons with cytoplasmic eosinophilia and increased nuclear basophilia or swollen neurons with pale vacuolated cytoplasm and a pale vesicular nucleus; and, Grade III — severely shrunken neurons with bright cytoplasmic eosinophilia, pyknotic nucleus, and/or incarnations. The cross-sectional area of gray matter, where moderate and severe neuronal alterations (i.e., Grades II and III) predominated, were determined with a Keuffel and Esser planimeter in coronal sections of the right cerebral hemispheres 3 mm posterior to the temporal lobe tip. The percentage of gray matter surface area (i.e., ischemic gray area/total gray area × 100) where severe ischemic neuronal alterations predominated was determined.

Capillary luminal diameters were measured in the right and left Sylvian cortex, that is, the cortex underlying the detector probes. This was done using a calibrated eyepiece micrometer. Mean capillary luminal diameters were calculated. Measurement taken from the ischemic right Sylvian cortex were compared with those from the non-ischemic left Sylvian cortex using the Student's t-test.

Results

Vital Signs

Systemic stability was maintained in all cats. Mean systolic blood pressure was $95 ± 5$ mm/Hg. Mean body temperature was $37 ± 0.5°C$. Hematocrit was 34 ± 2%. Arterial blood gases were controlled by adjusting the ventilation. Mean Pao_2 was $105 ± 5$ torr and mean $Paco_2$ was $33 ± 2$ torr.

Morphological Studies

1. **Macroscopic Findings.** Cerebral tissue in the right MCA territory was slightly swollen in 2 of the 6 cats

<table>
<thead>
<tr>
<th>Duration of occlusion (hours)</th>
<th>Distribution of Colloidal Carbon in Right Cerebral Hemispheres Following MCA Occlusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>

\times = mild, y = moderate; z = intense.

\(^1\) Little, Cook et al.

\(^2\) Keuffel and Esser planimeter.
after 1 hour occlusion. Four of 6 cats with 3 hours occlusion had slight to moderate swelling and shift of midline structures (i.e., ≤ 1 mm). Substantial swelling and midline shift (i.e., > 1 mm) were present in 5 of 6 cats after 6 hours occlusion (fig. 1).

Fluorescein staining was present in the caudate nucleus and/or cortex supplied by the right MCA of 1 cat after 1 hour occlusion, 4 cats after 3 hours occlusion, and 4 cats after 6 hours occlusion. In most instances the fluorescein staining was faint. However, in 1 cat after 6 hours occlusion, intense fluorescein staining was seen in the ischemic gray matter. Fluorescein was not detected in white matter. Evans blue staining was observed in the caudate nucleus and cortex in the right MCA territory of 3 cats after 6 hours occlusion.

The major branches of both right and left MCA's were filled with the carbon solution. The distribution and intensity of carbon staining in the right hemispheres are recorded in the table.

2. Microscopic Findings. The evolution of ischemic changes was similar to previous detailed descriptions.4,6,10-17 Grade I and II neuronal alterations were seen in the caudate nucleus and/or cortex supplied by the right MCA of 6 cats after 1 hour occlusion. These neuronal changes invariably had a multifocal distribution. Severe neuronal alterations (i.e., Grades II and III) were present in both caudate nucleus and cortex in 4 cats after 3 hours occlusion and 5 cats after 6 hours occlusion. Ischemic neuronal changes were not present in the cortex of 2 cats in the 3 hour group and 1 cat in the 6 hour group. Mean percentage of gray matter narrowing was not seen in right Sylvian cortex of those cats with without ischemic changes.

Ischemic edema invariably was restricted to areas where neuronal alterations were present.

Mean capillary luminal diameter in the non-ischemic left Sylvian cortex was 6.5 ± 0.5 μm. Progressive capillary luminal narrowing was seen in the right Sylvian cortex of cats with findings of ischemic edema and neuronal changes. Mean capillary luminal diameter in these cats was 6.0 ± 0.5 μm at 1 hour (p < 0.01), 5.5 ± 1.0 μm at 3 hours (p < 0.01), and 5.0 ± 1.0 μm at 6 hours (p < 0.001). Capillary luminal narrowing was not seen in right Sylvian cortex of those cats without other ischemic changes.

Isotope Transit Studies

The transit time referred to the time required for a single passage of the isotope-labeled material through the cerebral circulation underlying the detector probe. This was determined from measurements of the total peak time.131I albumin transit time in the right Sylvian region was 8 ± 2 seconds before occlusion (fig. 2A). It increased to 10 ± 2 seconds immediately after right MCA occlusion (fig. 2B). The peak of the transit curve after occlusion had a rounder contour than before occlusion. With 1 hour occlusion, transit time was 13 ± 1 seconds (fig. 2C). In the cats with ischemic cortical lesion, transit time was 15 ± 2 seconds after 3 hours occlusion and 19 ± 3 seconds after 6 hours occlusion (figs. 2D and E). In 2 cats without morphological changes in the right Sylvian cortex, one after 3 hours occlusion and another after 6 hours occlusion, there was no prolongation of transit times when compared with the immediate post-occlusion studies (fig. 2F). Peak amplitudes when present on the left side were less than 10% of those recorded by the right-sided detector.

125I albumin transit studies were slightly longer than the transit times for 131I albumin in all but one experiment where the transit times for 125I albumin and 131I albumin were essentially the same.

![Coronal section of cat brain following 6 hours of right MCA occlusion. There is considerable right cerebral swelling with right to left shift of midline structures. Pallor is present in the right MCA territory. Evans blue staining in the cortex partly obscures the impaired carbon filling. (R = right).](http://stroke.ahajournals.org/)

Figure 1. Coronal section of cat brain following 6 hours of right MCA occlusion. There is considerable right cerebral swelling with right to left shift of midline structures. Pallor is present in the right MCA territory. Evans blue staining in the cortex partly obscures the impaired carbon filling. (R = right).
Discussion

Microcirculatory obstruction (i.e., "no-reflow phenomenon") was initially demonstrated in ischemic brain by Ames et al. Ischemia was produced in rabbits by sectioning the basilar artery, clamping the common carotid arteries, and constricting the neck with a pneumatic cuff. Large perfusion defects, demonstrated by the colloidal carbon perfusion technique, were consistently seen with 15 min occlusion.

Subsequent morphological studies in primates and cats undergoing MCA occlusion have provided further insight into the development of microcirculatory impairment and its relationship to changes in the parenchyma. The ischemic lesion was found to develop in a biphasic fashion. Microcirculatory obstruction, as demonstrated by carbon perfusion, did not occur until the secondary phase, that is, at a time when irreversible changes had already occurred. However, important changes, such as capillary and venous narrowing, capillary separation, and endothelial swelling seen during the primary phase, were thought to be important factors in impairing microcirculatory flow.

Erythrocyte sludging in the microvasculature also appeared to be an important factor. Rheologic studies performed by Merrill have shown that blood viscosity increases as the rate of flow decreases. Increased viscosity was attributed to erythrocyte aggregation and was found to be a function of the third power of the hematocrit. Fischer and Ames...
subsequently demonstrated substantial reduction of impaired carbon filling in the rabbit model of global brain ischemia by acute hemodilution with saline. Their findings appeared to substantiate the importance of blood viscosity changes.

Cerebral blood flow following acute experimental MCA occlusion in primates and cats has been measured by a variety of techniques including diffusible isotope clearance (i.e., hydrogen, Xenon, Krypton), cerebral autoradiography and microsphere injection. These studies have consistently demonstrated substantial rCBF reduction immediately following MCA occlusion. The most severe, persistent reduction in rCBF in the occluded MCA territory of cats was reported by Hossmann and Schüier using 15 μ radio-active microspheres. Regional CBF initially dropped to 9.2 ± 2 ml/100 gm/minute (control: 32 ± 4 ml/100 gm/minute) in cats developing a morphological lesion and fell to lower levels during the subsequent 4 hours. This secondary rCBF decline appeared to correlate with the progressive brain swelling seen in this group of animals. Unfortunately, MCA occlusion longer than 4 hours was not studied.

The pre-occlusion transit times for 131I albumin (i.e., 8 ± 2 seconds) and 55Fe erythrocytes (i.e., 10 ± 2 seconds) were similar to previously-reported values for normal brain. Occlusion of the MCA resulted in an immediate 2 second delay of the transit times in the right Sylvian region. Additional increases in transit times occurred with longer periods of ischemia in cats developing morphological changes in the Sylvian cortex. This progressive impairment of the microcirculation correlated with the increasing ischemic edema and capillary luminal narrowing. In those cats without morphological change or with changes restricted to subcortical structures (i.e., caudate nucleus), transit times at the end of the occlusion period were essentially unchanged from those immediately after MCA occlusion. These findings, together with the low counts recorded over the non-ischemic left hemisphere, indicated that the information recorded by the right-sided detector was derived primarily from cortex.

Microcirculatory obstruction, as demonstrated by carbon perfusion studies, probably does not represent a state of complete microvascular occlusion. Ames et al. in their initial description of the so-called "no-reflow phenomena," eliminated many of the carbon perfusion defects by washing out the brain circulation with Ringer's solution prior to the onset of ischemia. Olson and Hossmann made similar observations. Subsequent studies by Fischer and Ames revealed that the amount of obstruction demonstrated by carbon perfusion was inversely related to the infusion pressure. In our study, no evidence of complete microcirculatory obstruction to albumin and erythrocyte transit was seen in cats undergoing 6 hours of MCA occlusion despite the impaired filling of the cortical microcirculation with carbon.

Rosenblum postulated a state of "plasma skimming" (i.e. plasmapheresis) developing in brain ischemia. His conclusions were based largely upon direct observations of the cortical microcirculation in anoxic mice. He expressed concern that "plasma skimming" or "inconsistency of regional hematocrit" could produce serious errors in rCBF measurements using diffusible tracer techniques. Subsequent morphological studies in primates and cats undergoing MCA occlusion also suggested a separation in plasma and erythrocyte flow (i.e. plasmapheresis).

In the present study, albumin transit was slightly more rapid than erythrocyte transit. This relationship remained constant both before and after MCA occlusion in the cats undergoing combined isotope injections. There was no evidence of disproportionate delay of erythrocyte transit as compared with plasma transit during the evolution of infarction. This indicated that a state of plasmapheresis had not developed. However, the limitations of the measurement technique used could obscure the presence of plasmapheresis within the small areas of the cortex which were studied.

The relationship of the early microcirculatory changes to subsequent tissue viability has not been clearly defined. Studies directed toward the prevention of microcirculatory impairment, however, suggest that microvascular changes play an important role. Administration of hyperosmolar agents, such as mannitol and low-molecular-weight dextran, have been shown to suppress the development of ischemic edema and microvascular changes and thereby delay the onset of ischemic neuronal injury. These findings indicate that treatment of acute focal cerebral ischemia should be directed towards the maintenance of the microcirculation as well as the preservation of neuronal metabolic integrity.

Acknowledgment

The authors express appreciation to Bernadine Bryerton, R.N. for her assistance in the laboratory. This project was supported by a grant from the American Heart Association (Northeast Ohio Affiliate) and donations from Mr. Augustus Knight and Mr. Lloyd Fry.

References

8. Sundt TM, Waltz AG: Cerebral ischemia and reactive hyperemia. Studies of cortical blood flow and microcirculation...
MICROCIRCULATORY OBSTRUCTION IN ISCHEMIA/Little, Cook et al. 223

27. Little JR: Modification of acute focal ischemia by treatment with mannitol. Stroke 9: 4-9, 1978
Microcirculatory obstruction in focal cerebral ischemia: albumin and erythrocyte transit.
J R Little, A Cook, S A Cook and W J MacIntyre

doi: 10.1161/01.STR.12.2.218

Stroke is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1981 American Heart Association, Inc. All rights reserved.
Print ISSN: 0039-2499. Online ISSN: 1524-4628

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://stroke.ahajournals.org/content/12/2/218

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Stroke can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Stroke is online at:
http://stroke.ahajournals.org/subscriptions/