Hemodynamic and Clinicopathologic Verification of a Stroke Model in the Dog

PABLO M. LAWNER, M.D., JOHN P. LAURENT, M.D., FREDERICK A. SMEONE, M.D., AND EUGENE A. FINK, M.S.

SUMMARY Twenty-five mongrel dogs had intracranial internal carotid and proximal middle cerebral artery occlusions. The animals were followed for one week and subsequently sacrificed. This method of clipping produced a mean drop in cerebral blood flow of 48.4% as measured by the ^{133}Xe washout technique. Cerebral blood flow was not affected by the brain retraction necessary for clip placements. Mortality in the first week was 16% and neurological deficits were observed in 73% of the animals. Infarction was present in 80% of the animals, and the mean percent infarction of the affected hemisphere was $17.00 \pm 3.98 SE$.

This is a useful stroke model in an animal which is easily available, inexpensive, and suitable for microvascular intracranial surgery research.

AN OBSTACLE in stroke research is the lack of a suitable animal model. Primate models have been generally preferred because of their similarity to humans and the relatively high infarction rate with various methods. On the other hand, primates have become expensive, and, because of their small size, unsuitable for microvascular bypass research. The dog is an easily available, relatively inexpensive experimental animal, and is suitable for cerebral microsurgery. The main disadvantage has been the difficulty in producing infarction due to the great amount of collateral circulation the dog has available. For this reason, the only feasible way to induce cerebral infarction in the dog is to occlude the vasculature distal to the major collateral circulation. Embolization techniques have been utilized aimed at occluding the horizontal portion of the middle cerebral artery. A problem with these techniques is the occasional fragmentation of the embolus or its extracranial passage.

The other possibility involves the use of intracranial vascular clipping. This can be done either via a transorbital approach or utilizing direct retraction of the brain to approach the internal carotid artery and its branches. Because of our interest in microvascular bypass research, and the measurement of cerebral blood flow with direct cortical exposure which requires a sufficiently large area of craniectomy to expose also the internal carotid intracranially, we decided to seek a model of intracranial vascular clipping through the direct approach. We selected a 2 clip method via a pterional approach which gives a high infarction frequency, but still allows passage of the radioisotope into the ipsilateral common carotid artery to the clipped hemisphere.

This paper describes the technique and its effects on regional cortical cerebral blood flow (rCBF), neurologic deficit, and infarction.

Materials and Methods

The experimental series consists of data from 36 mongrel dogs weighing 15–18 kg. Eleven dogs served as unaltered controls (sham-operated), and 25 had intracranial vascular occlusion (untreated-ligated). All the animals were sedated with phencyclidine
HC1 1 mg/kg i.m. and given atropine sulfate 0.02
mg/kg. Each animal was also given a prophylactic
dose of Combiotic (Pfizer) 2 ml i.m. The animals were
paralyzed with gallamine triethiodide 2 mg/kg i.v.
with supplemental doses as needed, intubated and
passively ventilated with a Harvard animal respirator
on 60% N2O-40% O2. The respiratory rate and tidal
volume were adjusted to maintain an end tidal CO2 of
5%. All operative sites were infiltrated with 1%
procaine HC1. The femoral artery was catheterized to
measure arterial blood pressure and to collect blood
gas analysis. A catheter was placed in a forepaw
vein to administer drugs and fluids. A third catheter
was placed into the right lingual artery and passed
retrograde into the common carotid artery for the in-
jection of 56Kr.

Head surgery was performed as follows: the right
temporalis muscle was subperiosteally dissected and
reflected over the zygoma. A craniectomy was per-
formed over the Sylvian fissure and was carried infero-
laterally removing as much of the sphenoid wing as
possible. The dura was opened and the frontal lobe
slightly retracted to expose the internal carotid artery.
With the aid of a Zeiss operating microscope, the
arachnoid around the vessels was dissected off and the
internal carotid artery distal to the posterior com-
municating artery, and the proximal middle cerebral
artery were occluded with Yasargil microclips (fig. 1).

Arterial blood gases were measured frequently with
an IL 113 blood gas analyzer and maintained within
physiologic limits by respirator adjustments and
sodium bicarbonate i.v. as needed; pH 7.30-7.40, Po2
80-120 torr, and Pco2 38-42 torr in all animals.

Arterial blood pressure was monitored continuously
with a Sanborn pressure transducer and recorded in a
Sanborn 350 physiograph along with the end tidal
CO2. Mean arterial blood pressure was maintained at
115 ± 10 torr by the use of phlebotomy, intravenous
saline and a tilt table.

Regional cortical cerebral blood flow (rCBF) was
measured by the 56Kr washout technique using an in-
tracarotid injection of 3-6 mCi of the isotope dis-
solved in saline. A Geiger-Muller tube was placed over
the exposed right hemisphere, and its output was
amplified and recorded on a Harshaw count ratemeter
and strip chart recorder. The blood flow was

calculated by the height/area method. rCBF was
measured prior to ligation (Initial-rCBF), im-
mediately after ligation (Postclip-rCBF) when
applicable, 3 hours after ligation (3 hour-rCBF), and
one week later (1 week-rCBF). In addition, rCBF was
measured after cerebral retraction, but prior to liga-
tion (Post retraction-rCBF) in 24 randomly selected
animals. The duration of anesthesia in all cases varied
between 6-8 hours.

After surgery, the animals were allowed to awake
and breathe spontaneously. All catheters were
removed, the animals extubated, returned to in-
dividual cages and allowed to eat and drink ad lib. The
animals were given Combiotic 1 ml i.m. and assigned
daily neurologic scores according to the grading
system of Crowell and Olsson:

Grade I = No neurologic deficit.
Grade II = Occasionally circles toward operated
side. Stands up quickly without as-
sistance. No field deficit to visual
threat.
Grade III = Circles toward operated side. Stands
up only with assistance ± contralat-
eral field deficit. No impairment of
consciousness.
Grade IV = Cannot stand ± contralateral field
deficit ± drowsy.
Grade V = Died.

One week after the initial surgery the animals were
again anesthetized in exactly the same manner,
catheters were replaced, the right hemisphere exposed,
and rCBF repeated (1 week-rCBF). The animals were
then given 6 ml of 25% sodium fluorescein i.v. and
sacrificed 30 minutes later with 50 ml of intracarotid
10% formalin. The brains were carefully removed and
clip placements verified. After 3 days of formalin fixa-
tion, percent infarction was determined by volumetric
measurement of microscopically proven infarcted-
fluorescent areas as described in detail elsewhere.

Non-parametric statistical tests of significance
(Kruskal-Wallis Anova and Mann-Whitney U) were

FIGURE 1. Photomicrograph of the right intracranial in-
ternal carotid artery (ICA), anterior cerebral artery (ACA),
middle cerebral artery (MCA) and posterior communicat-
ing artery (PCA). The arrowheads show the clip positions.
chosen to analyze the data. Significance was assumed when \(p < 0.05 \).

Results

Cerebral Blood Flow

In the 24 randomly selected animals in which postretraction rCBF was calculated, the initial-rCBF was \(85.07 \pm 3.93 \) and the post retraction-rCBF was \(80.41 \pm 5.18 \). This difference was not statistically significant (\(p > 0.05 \)).

In the untreated-ligated group, initial-rCBF was \(93.25 \pm 4.70 \) and postclip-rCBF was \(48.11 \pm 3.60 \). This represents a 48.4% reduction in blood flow (\(p < 0.001 \)). The 3 hour-rCBF was \(49.37 \pm 4.06 \) and the 1 week-rCBF was \(45.15 \pm 5.22 \), both of which were not significantly different from postclip-rCBF (\(p > 0.05 \)) (table 1).

In the sham-operated group, Initial-rCBF was \(90.34 \pm 6.07 \), 3 hour-rCBF was \(73.60 \pm 6.22 \) and 1 week-rCBF was \(86.48 \pm 1.36 \). This represents a transient 18.5% drop by 3 hours, \(p < 0.05 \) with a return to initial blood flow levels by one week (table 1).

Neurologic Deficit

From the first day after surgery until the time of sacrifice, all sham-operated animals remained neurologically intact (Grade I), and there was no mortality.

The median neurologic grade of the 7 days for each animal in the untreated control group can be seen in table 2. In only 28% of animals the median grade was I (no neurologic deficit). Table 3 displays the number of animals (untreated-ligated) in each grade over the 7 days of the study. This data shows that there is a linear tendency for neurologic improvement as time goes on.

Mortality in this group was 16% (Grade V). One animal died on the first postoperative day, one on the second day, and 2 on the third postoperative day.

Cerebral Infarction

Evidence of fluorescent staining of the brain (infarction) was absent in all sham-operated animals.

In the untreated-controls some degree of infarction was seen in 20/25 (80%) of the animals. The mean percent infarction of the affected hemisphere was \(17.00 \pm 3.98 \). Infarction was confined to the distribution of the middle cerebral artery in all animals and was "bland" in all but 2 animals where there was evidence of gross hemorrhagic infarction, with one of these showing also intraventricular hemorrhage.

Figure 2 is a graph of median neurologic grade vs percent infarction showing a good correlation between size of infarct and degree of neurologic impairment.

![Figure 2](image-url)

Figure 2. 7 day Median Neurologic grade versus percent hemisphere infarction in the untreated-ligated group.

Table 1

<table>
<thead>
<tr>
<th>Group</th>
<th>N</th>
<th>Initial-rCBF</th>
<th>Postclip-rCBF</th>
<th>3 Hour-rCBF</th>
<th>1 Week-rCBF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Untreated-ligated</td>
<td>25</td>
<td>93.25 ± 4.70</td>
<td>48.11 ± 3.60</td>
<td>49.37 ± 4.06</td>
<td>45.15 ± 5.22</td>
</tr>
<tr>
<td>Sham-operated</td>
<td>11</td>
<td>90.34 ± 6.07</td>
<td>—</td>
<td>73.60 ± 6.22</td>
<td>86.48 ± 1.36</td>
</tr>
</tbody>
</table>

Table 2

<table>
<thead>
<tr>
<th>Neurologic Grade</th>
<th>Number of animals</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>7</td>
<td>28%</td>
</tr>
<tr>
<td>II</td>
<td>1</td>
<td>4%</td>
</tr>
<tr>
<td>III</td>
<td>11</td>
<td>44%</td>
</tr>
<tr>
<td>IV</td>
<td>2</td>
<td>8%</td>
</tr>
<tr>
<td>V</td>
<td>4</td>
<td>16%</td>
</tr>
</tbody>
</table>

Table 3

<table>
<thead>
<tr>
<th>Day</th>
<th>Neurologic Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>I</td>
</tr>
<tr>
<td>5</td>
<td>II</td>
</tr>
<tr>
<td>6</td>
<td>III</td>
</tr>
<tr>
<td>7</td>
<td>IV</td>
</tr>
<tr>
<td>8</td>
<td>V</td>
</tr>
</tbody>
</table>

The significance was assumed when \(p < 0.05 \).
Discussion

The process of selecting an animal model for stroke research has been a difficult one. Anatomical anthropomorphism has been the principal criterion used for selection and, therefore, primates became the ideal candidates. Primates are now very costly and difficult to obtain. In addition, in the primates available for research, intracranial vascular structures are usually too small for microvascular surgery. The dog is a relatively inexpensive experimental animal which is easy to handle and readily available. It has proven to be a useful animal for intracranial microvascular surgery.

In spite of some theoretical disadvantages to a stroke model that requires an open cranium and dura mater, this is unavoidable if one is to perform intracranial vascular surgery research or the measurement of cortical cerebral blood flows using a beta emitter like 85Kr. In these situations, the additional surgery required to expose the circle of Willis unilaterally is negligible. Exposure of the internal carotid artery and its proximal branches requires some brain retraction but as our data show, this retraction has no effect on cortical blood flow and produces no neurologic deficit or infarction.

The selection of a 2 clip stroke method is based on our unpublished experience showing that this technique produces a greater and more consistent drop in cerebral blood flow and infarction than a single middle cerebral artery clip. In order to measure cerebral blood flows after an intracarotid bolus injection of radioisotope, the most proximal clip has to be placed distal to the posterior communicating artery, thus allowing the isotope to reach the middle cerebral artery distribution via posterior cerebral-middle cerebral collaterals.

This clip technique produced a mean drop in rCBF of 48.4% which persisted in time. In the sham-operated animals rCBF dropped 18.5% by 3 hours. This phenomenon has been previously described by several investigators.

The infarction frequency of 80% achieved with this technique is high, circumventing one of the major problems with dog stroke models. All the infarcts were limited to the vascular distribution of the middle cerebral artery and were non-hemorrhagic with only 2 exceptions.

Neurologic deficit was shown to have a positive correlation with percent hemisphere infarction as was expected.

References

Hemodynamic and clinicopathologic verification of a stroke model in the dog.
P M Lawner, J P Laurent, F A Simeone and E A Fink

doi: 10.1161/01.STR.12.3.313

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://stroke.ahajournals.org/content/12/3/313

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Stroke can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Stroke is online at:
http://stroke.ahajournals.org//subscriptions/