Original Contributions

Hypertensive Putaminal Hemorrhage: Treatment and Results. Is Surgical Treatment Superior to Conservative One?

SHIRO WAGA, M.D., D.M.Sc., AND YOSHIKUKE YAMAMOTO, M.D.

SUMMARY Seventy-four patients with hypertensive putaminal hemorrhage (HPH) were followed at least 6 months after treatment and estimated by ADL. They were graded according to the state of consciousness on admission. The grading consists of 6 grades: Grade 1, fully conscious; Grade 2, somnolent; Grade 3, stuporous; Grade 4, semi-comatose; and Grade 5, deeply comatose. Removal of HPH was performed in 18 patients and conservative treatment was done in 56 patients. The mortality in surgically treated group was 28% while that in conservatively treated group was 14%. The patients who returned to full work or independent life without disability and with minimal disability after surgical treatment were, 50% in Grade 1, 33% in Grade 2, and 50% in Grade 3. The patients without disability and with minimal disability after conservative treatment were; 87% in Grade 1, 80% in Grade 2, and 22% in Grade 3. None below Grade 4 returned to full work or independent life in both groups. There was good correlation between the state of consciousness and CT findings on admission. There was no correlation between good recovery and the side of HPH. Our results do not support the view that the surgical treatment is superior to the conservative one in the management of HPH.

THE OPTIMAL FORM OF TREATMENT for patients who have suffered hypertensive putaminal hemorrhage (HPH) remains controversial and undetermined even after the advent of computed tomography (CT). While some neurosurgeons consider that HPH should be treated surgically, others conclude that it should be treated conservatively. Most Japanese neurosurgeons believe that the surgical treatment gives better results. In this report we represent our experience on HPH and discuss whether the surgical treatment gives better results.

Material and Method

From 1977 to 1980, 121 patients with hypertensive intracerebral hemorrhage were admitted to Mie University Hospital. It is a referral hospital located in the rural area of the middle of Japan. According to Fisher, the patients with hypertensive intracerebral hemorrhage are divided into 5 groups; in our series 74 patients (61%) were putaminal hemorrhage, 21 patients (17%) were thalamic hemorrhage, 14 patients (12%) were cerebral subcortical, 10 patients (8%) were cerebellar, and 2 (2%) were pontine hemorrhage. Surgical treatment, that is, evacuation of hemorrhage, was performed in 24% of putaminal hemorrhage, 36% of cerebral subcortical, and 2 (2%) were pontine hemorrhage. Surgical treatment, that is, evacuation of hemorrhage, was performed in 24% of putaminal hemorrhage, 36% of cerebral subcortical, and 50% of cerebellar hemorrhage. None with thalamic and pontine hemorrhage had evacuation of hemorrhage (table 1).

From the Department of Neurosurgery, Mie University Medical School and Hospital, Tsu, Mie, Japan.

Address correspondence to: Dr. Shiro Waga, Department of Neurosurgery, Mie University Medical School and Hospital, 2-174 Edobashi, Tsu, Mie 514, Japan.

Received December 20, 1982; revision accepted January 31, 1983.

The charts of all the patients with HPH were reviewed and the follow-up results at least 6 months following treatment were obtained by direct examination of the patients, telephone call to the surviving patients and/or family, or inquiry.

Cooperative study for hypertensive intracerebral hemorrhage in Japan has proposed Neurological Grades, computed tomographic classification and ADL of HPH as in table 2.

In table 2 we discuss only the treatment and results of HPH. There were 74 patients with HPH. Surgical treatment was performed only in 18 patients (24%) and conservative treatment was performed in 56 patients (76%). Selection of patients was as follows: those who were admitted in 1977 were all treated surgically and those who were admitted from 1978 to 1980 were all treated conservatively. In the surgically treated group the average age of patients was 52 years, ranged from 31 to 69, and 11 were male and 7 were female. In the conservatively treated group the average age was 55, ranged from 46 to 65, and 35 were male and 21 were female. Fifty-two patients (70%) were admitted to the hospital within 24 hours of the onset of the ictus and 22 patients (30%) were admitted 2 to 4 days after the onset. Sixty-seven patients (91%) were admitted and evaluated within 48 hours from the onset. All the patients were diagnosed by CT and showed typical putaminal hemorrhage. None had cerebral angiography. Atypical putaminal hemorrhage was excluded from this study. Conservative treatment does not mean "doing nothing". It includes (1) intensive care of vital signs, especially control of hypertension, (2) management of increased intracranial pressure and cerebral edema, (3) adequate care of lung, kidney and skin, and
Results

The mortality, death within a month, after surgical treatment was 28%. There was no operative death in patients with Neurological Grade 1 to 3. The mortality was 50% in patients with Grade 4-a, and 67% in those with Grade 4-b. The mortality after conservative treatment was 14%. There was no mortality in patients with Grade 1 and 2. The mortality in patients with Grade 3 was 10%; it was 60% in those with Grade 4-a and 4-b. In Grade 5 all the patients died within a month (table 3). The mortality after conservative treatment was statistically significantly less than that after surgical treatment (P < 0.05). Causes of death included brain death, gastrointestinal hemorrhage, pulmonary complications, and cardiac and renal failure.

The follow-up results 6 months after treatment were analyzed (tables 4 and 5). In the group of conservatively treated patients (table 4), 34% of patients was in full work or lived independently without disability and 26% was in full work or lived independently with minimal disability. Fourteen percent of patients was partially disabled; 8% was totally disabled. The patients who belonged to these subgroups required constant assistance in living whether partial or total. And 18% was dead. Good recovery means that the patients get to ADL 1 and 11, that is, coping with independent daily lives. The results depended upon the Neurological Grade on admission. In Grade 1 patients 87% showed good recovery. In Grade 2 patients 80% showed good recovery. In Grade 3 patients only 22% showed good recovery, and in those below Grade 4 there was none with good recovery.
Table 5 shows the 6 months follow-up results after surgical treatment. Although the number of patients was few, it shows that only 23% of patients got back to full work or independent life without disability and only 8% to full work or independent life with minimal disability. Forty-six percent of patients was partially disabled, 8% was totally disabled, and 15% was dead. Fifty percent of patients with Neurological Grade 1 on admission showed good recovery. Only 33% in those with Grade 2 and 50% in those with Grade 3 gained good recovery. In patients below Grade 4 on admission none showed good recovery.

Six months follow-up results after surgical treatment were not better than those after conservative treatment. It seems that the conservative treatment is superior to the surgical one in patients with Grade 1 and 2. However, there was no statistically significant difference between these 2 groups (fig. 1).

Neurological Grades on admission and CT classification, proposed by Cooperative Study for hypertensive intracerebral hemorrhage in Japan, were well correlated as shown in figure 2. The worse the Neurological Grade on admission, the more advanced CT types were observed. The relationship between CT classification and ADL 6 months following treatment was not clear (fig. 3).

Correlation between good recovery and the side of HPH was studied. In conservatively treated group 64% of patients with right sided hemorrhage and 57% of those with left sided hemorrhage showed good recovery. In the surgically treated group, although the number of patients was few, 25% of patients showed good recovery in the right sided and in the left sided HPH, respectively. There was no correlation between good recovery and the side of HPH.

In figure 4, we compare our results of conservative treatment with those of Cooperative study for hypertensive intracerebral hemorrhage in Japan. The surgically treated group in the Cooperative study does not give better results than those of our conservative treatment. There is no statistically significant difference, however. Our study showed that the surgical treatment for HPH was not superior to the conservative one.

Discussion

Although hypertensive intracerebral hemorrhage may be divided into 2 groups, lobar and nuclear, or capsular and deep, or into 4 groups; nuclear, para-nuclear, paraventricular and subcortical, classification of Fisher have been used by many investigators. Putaminal hemorrhage is most correlated as shown in figure 2. The worse the Neurological Grade on admission, the more advanced CT types were observed. The relationship between CT classification and ADL 6 months following treatment was not clear (fig. 3).

Correlation between good recovery and the side of HPH was studied. In conservatively treated group 64% of patients with right sided hemorrhage and 57% of those with left sided hemorrhage showed good recovery. In the surgically treated group, although the number of patients was few, 25% of patients showed good recovery in the right sided and in the left sided HPH, respectively. There was no correlation between good recovery and the side of HPH.

In figure 4, we compare our results of conservative treatment with those of Cooperative study for hypertensive intracerebral hemorrhage in Japan. The surgically treated group in the Cooperative study does not give better results than those of our conservative treatment. There is no statistically significant difference, however. Our study showed that the surgical treatment for HPH was not superior to the conservative one.

Discussion

Although hypertensive intracerebral hemorrhage may be divided into 2 groups, lobar and nuclear, or capsular and deep, or into 4 groups; nuclear, para-nuclear, paraventricular and subcortical, classification of Fisher have been used by many investigators. Putaminal hemorrhage is most correlated as shown in figure 2. The worse the Neurological Grade on admission, the more advanced CT types were observed. The relationship between CT classification and ADL 6 months following treatment was not clear (fig. 3).

Correlation between good recovery and the side of HPH was studied. In conservatively treated group 64% of patients with right sided hemorrhage and 57% of those with left sided hemorrhage showed good recovery. In the surgically treated group, although the number of patients was few, 25% of patients showed good recovery in the right sided and in the left sided HPH, respectively. There was no correlation between good recovery and the side of HPH.

In figure 4, we compare our results of conservative treatment with those of Cooperative study for hypertensive intracerebral hemorrhage in Japan. The surgically treated group in the Cooperative study does not give better results than those of our conservative treatment. There is no statistically significant difference, however. Our study showed that the surgical treatment for HPH was not superior to the conservative one.

Discussion

Although hypertensive intracerebral hemorrhage may be divided into 2 groups, lobar and nuclear, or capsular and deep, or into 4 groups; nuclear, para-nuclear, paraventricular and subcortical, classification of Fisher have been used by many investigators. Putaminal hemorrhage is most correlated as shown in figure 2. The worse the Neurological Grade on admission, the more advanced CT types were observed. The relationship between CT classification and ADL 6 months following treatment was not clear (fig. 3).

Correlation between good recovery and the side of HPH was studied. In conservatively treated group 64% of patients with right sided hemorrhage and 57% of those with left sided hemorrhage showed good recovery. In the surgically treated group, although the number of patients was few, 25% of patients showed good recovery in the right sided and in the left sided HPH, respectively. There was no correlation between good recovery and the side of HPH.

In figure 4, we compare our results of conservative treatment with those of Cooperative study for hypertensive intracerebral hemorrhage in Japan. The surgically treated group in the Cooperative study does not give better results than those of our conservative treatment. There is no statistically significant difference, however. Our study showed that the surgical treatment for HPH was not superior to the conservative one.

Discussion

Although hypertensive intracerebral hemorrhage may be divided into 2 groups, lobar and nuclear, or capsular and deep, or into 4 groups; nuclear, para-nuclear, paraventricular and subcortical, classification of Fisher have been used by many investigators. Putaminal hemorrhage is most correlated as shown in figure 2. The worse the Neurological Grade on admission, the more advanced CT types were observed. The relationship between CT classification and ADL 6 months following treatment was not clear (fig. 3).

Correlation between good recovery and the side of HPH was studied. In conservatively treated group 64% of patients with right sided hemorrhage and 57% of those with left sided hemorrhage showed good recovery. In the surgically treated group, although the number of patients was few, 25% of patients showed good recovery in the right sided and in the left sided HPH, respectively. There was no correlation between good recovery and the side of HPH.

In figure 4, we compare our results of conservative treatment with those of Cooperative study for hypertensive intracerebral hemorrhage in Japan. The surgically treated group in the Cooperative study does not give better results than those of our conservative treatment. There is no statistically significant difference, however. Our study showed that the surgical treatment for HPH was not superior to the conservative one.

Discussion

Although hypertensive intracerebral hemorrhage may be divided into 2 groups, lobar and nuclear, or capsular and deep, or into 4 groups; nuclear, para-nuclear, paraventricular and subcortical, classification of Fisher have been used by many investigators. Putaminal hemorrhage is most correlated as shown in figure 2. The worse the Neurological Grade on admission, the more advanced CT types were observed. The relationship between CT classification and ADL 6 months following treatment was not clear (fig. 3).

Correlation between good recovery and the side of HPH was studied. In conservatively treated group 64% of patients with right sided hemorrhage and 57% of those with left sided hemorrhage showed good recovery. In the surgically treated group, although the number of patients was few, 25% of patients showed good recovery in the right sided and in the left sided HPH, respectively. There was no correlation between good recovery and the side of HPH.

In figure 4, we compare our results of conservative treatment with those of Cooperative study for hypertensive intracerebral hemorrhage in Japan. The surgically treated group in the Cooperative study does not give better results than those of our conservative treatment. There is no statistically significant difference, however. Our study showed that the surgical treatment for HPH was not superior to the conservative one.

Discussion

Although hypertensive intracerebral hemorrhage may be divided into 2 groups, lobar and nuclear, or capsular and deep, or into 4 groups; nuclear, para-nuclear, paraventricular and subcortical, classification of Fisher have been used by many investigators. Putaminal hemorrhage is most correlated as shown in figure 2. The worse the Neurological Grade on admission, the more advanced CT types were observed. The relationship between CT classification and ADL 6 months following treatment was not clear (fig. 3).

Correlation between good recovery and the side of HPH was studied. In conservatively treated group 64% of patients with right sided hemorrhage and 57% of those with left sided hemorrhage showed good recovery. In the surgically treated group, although the number of patients was few, 25% of patients showed good recovery in the right sided and in the left sided HPH, respectively. There was no correlation between good recovery and the side of HPH.

In figure 4, we compare our results of conservative treatment with those of Cooperative study for hypertensive intracerebral hemorrhage in Japan. The surgically treated group in the Cooperative study does not give better results than those of our conservative treatment. There is no statistically significant difference, however. Our study showed that the surgical treatment for HPH was not superior to the conservative one.

Discussion

Although hypertensive intracerebral hemorrhage may be divided into 2 groups, lobar and nuclear, or capsular and deep, or into 4 groups; nuclear, para-nuclear, paraventricular and subcortical, classification of Fisher have been used by many investigators. Putaminal hemorrhage is most correlated as shown in figure 2. The worse the Neurological Grade on admission, the more advanced CT types were observed. The relationship between CT classification and ADL 6 months following treatment was not clear (fig. 3).

Correlation between good recovery and the side of HPH was studied. In conservatively treated group 64% of patients with right sided hemorrhage and 57% of those with left sided hemorrhage showed good recovery. In the surgically treated group, although the number of patients was few, 25% of patients showed good recovery in the right sided and in the left sided HPH, respectively. There was no correlation between good recovery and the side of HPH.

In figure 4, we compare our results of conservative treatment with those of Cooperative study for hypertensive intracerebral hemorrhage in Japan. The surgically treated group in the Cooperative study does not give better results than those of our conservative treatment. There is no statistically significant difference, however. Our study showed that the surgical treatment for HPH was not superior to the conservative one.

Discussion

Although hypertensive intracerebral hemorrhage may be divided into 2 groups, lobar and nuclear, or capsular and deep, or into 4 groups; nuclear, para-nuclear, paraventricular and subcortical, classification of Fisher have been used by many investigators. Putaminal hemorrhage is most correlated as shown in figure 2. The worse the Neurological Grade on admission, the more advanced CT types were observed. The relationship between CT classification and ADL 6 months following treatment was not clear (fig. 3).

Correlation between good recovery and the side of HPH was studied. In conservatively treated group 64% of patients with right sided hemorrhage and 57% of those with left sided hemorrhage showed good recovery. In the surgically treated group, although the number of patients was few, 25% of patients showed good recovery in the right sided and in the left sided HPH, respectively. There was no correlation between good recovery and the side of HPH.

In figure 4, we compare our results of conservative treatment with those of Cooperative study for hypertensive intracerebral hemorrhage in Japan. The surgically treated group in the Cooperative study does not give better results than those of our conservative treatment. There is no statistically significant difference, however. Our study showed that the surgical treatment for HPH was not superior to the conservative one.
common and in the clinical series the incidence of HPH ranges from 51 to 55%, while it ranges from 64 to 81% in the autopsy series. In our series HPH forms 61%. HPH may be further subdivided into 3 subgroups: hemorrhage in the anterior, mid-, and posterior putamen, and hemorrhage in the posterior half of the putamen or seen at the level of the bodies of the lateral ventricles on CT does not indicate good improvement. Cook et al and Benes et al divided the hemorrhage into 2 groups: Group A was defined as apoplectic event with marked neurological deficits and group B as apoplectic event with moderate or mild neurological dysfunction. The patients who belonged to group A did not improve after surgery and those who belonged to group B improved considerably. They said that the latter would continue to improve and recover without surgery. In their autopsy study, Kane and Aronson reported that in their 192 autopsy cases with spontaneous intracerebral hemorrhage, there were 147 cases with lethal form of hemorrhage (77%) and 45 cases with nonlethal prior hemorrhage (23%).

Evacuation of HPH is performed in order to remove the hemorrhage as a life-saving procedure, to lessen the increased intracranial volume, and to decrease the intracranial pressure and perifocal edema. Ransohoff et al and Gillingham and Satyanarayana have described that, if they look at the results of surgery in the lower conscious level, what is gained by surgery must be recommended only if the quality of surgery gives better results. Others have indicated a preference for delay in evacuation for 2 to 7 days after the onset of the hemorrhage, while others have indicated a preference for early surgery. Some neurosurgeons believe that the surgical treatment gives better results. There is no consensus of opinion on the treatment of HPH. The surgical removal of HPH may save the life of the patients and may give a good outcome in selected cases, while the removal may not improve the results and may only prolong existence in a vegetative state. Thus the criteria for selection of patients for surgery must be strict and must include a judgement as to whether the surgery can expect the best outcome. Surgery must be recommended only if the quality of survival is acceptable to the patients, to the family and to the society under the best circumstances.

Cooperative study for hypertensive intracerebral hemorrhage in Japan gave the following results as shown in figure 4; following the surgical treatment, good recovery (ADL 1 and 11) was obtained in 83% of patients with Neurological Grade 1, 59% of those with Grade 2, 33% of those with Grade 3, 47% of those with Grade 4-a and 2% of those with Grade 4-b. These results are not better than those of our conservative treatment.

Our study shows that the results of treatment of HPH...
do not depend upon the surgical treatment but depend upon
the size and extension of the original hemorrhage. The size and extension of the hemorrhage corre-
late well with Neurological Grade on admission. The larger the hemorrhage, the worse the Grade on admis-
sion and the prognosis in the follow-up study. Surgical treatment does not change the situation. The results
support the conclusion report by McKissock et al. and others. 1, 6, 31, 32, 47, 49-52

Conclusion

Our study indicates that the surgical treatment is not
superior to the conservative one in the management of
HPH. The surgical and conservative treatment gives
the same results. The larger the HPH, the worse the
clinical state on admission and the prognosis in the
follow-up study. The surgical treatment does not
change the situation.

Acknowledgments

The authors thank Drs. Makoto Sakakura, Hiroshi Tochio and Haru-
hiko Tashiro for their cooperation. This paper was partly read at 1982
Meeting of American Association of Neurological Surgeons, Honolulu,
Hawaii.

References

course in primary intracerebral hemorrhage. Neurosurg 4: 504-
511, 1978
3. Hoff JT: Intracerebral Hemorrhage. In: Current Management of
Neurologic Disease, Wilson CB Hoff JT (eds), New York, Edin-
4. Gillingham FJ, Satyanarayana K: Grading and timing of operative
treatment. In: Spontaneous and Intracerebral Haematomas. Adv-
ances in Diagnosis and Therapy, Pia HW, Langmaid C, Zierski J
264-266
first 48 hours in spontaneous intracerebral haematoma and spread-
ing haemorrhages. In: Spontaneous Intracerebral Haematomas.
Advances in Diagnosis and Therapy, Pia HW, Langmaid C, Zierski J
294-301
7. Allen MB Jr, Yaghmai F, El Gammal T: Spontaneous intracerebral
and intracerebellar hemorrhage. In: Neurological Surgery. A Com-
prehensive Reference Guide to the Diagnosis and Management of
Neurosurgical Problems, Youmans JR (ed), Philadelphia, London,
163-169, 1981
In: Spontaneous Intracerebral Haematomas. Advances in Diagnosis
and Therapy, Pia HW, Langmaid C, Zierski J (eds), Berling, Heidel-
berg, New York, Springer-Verlag, 1980, pp. 1-12
hypertensive intracerebral hemorrhage. J Neurosurg 24: 70-76,
1966
10. Yukawa H, Kanaya H: Indication for surgery in hypertensive intracere-
bral hemorrhage. A statistical study. Neurol Med Chir (Tokyo) 18:
361-365, 1978
intracerebral ganglionic hemorrhage. Neurol Med Chir (Tokyo)
18: 569-578, 1978
12. Tomonaga M: Surgical indication of hypertensive intracerebral
ation in the pre-acute stage. Review of 166 cases of hypertensive
intracerebral hemorrhage (lateral type). Neurol Med Chir (Tokyo)
20: 907-913, 1980
Rinsho Seijinbyo (Tokyo) 10: 19-27, 1980
treatment in intracerebral haematomas of the basal ganglia (coopera-
tive study in Japan). In: Spontaneous Intracerebral Haematomas.
Advances in Diagnosis and Therapy, Pia HW, Langmaid C, Zierski J
268-274
16. Suzuki J, Sato T: Grading and timing of operation in putaminal
intracerebral hemorrhage. In: Spontaneous Intracerebral Haemato-
mas. Advances in Diagnosis and Therapy, Pia HW, Langmaid C, Zierski J
274-279
17. Kitamura K, Kagawa M: Indication for operative treatment of
hypertensive intracerebral haematomas in the basal ganglia and thalamus.
In: Spontaneous Intracerebral Haematomas. Advances in Diagnosis
and Therapy, Pia HW, Langmaid C, Zierski J (eds), Berlin, Heidel-
18. Fisher CM: Clinical syndromes in cerebral thrombosis, hyperten-
sive hemorrhage, and ruptured saccular aneurysm. Cun Neurosurg 22:
377-392, 1975
19. Cuatico W, Adib S, Gaston P: Spontaneous intracerebral hematoma-
ment of primary intracerebral hemorrhage. J Neurosurg 27: 160-
164, 1967
hypertensive intracerebral haemorrhage. J Neurosurg 27: 509-
54, 1967
22. Isselbacher KM, Zacks RA: The diagnosis and management of
hypertensive intracerebral hemorrhage. Ann Intern Med 71:
513-515, 1969
In: Spontaneous Intracerebral Haematomas. Advances in Diagnosis
and Therapy, Pia HW, Langmaid C, Zierski J (eds), Berling, Heidel-
berg, New York, Springer-Verlag, 1980, pp. 11-25
Neurosurg 20: 514-526, 1977
vances in Diagnosis and Therapy, Pia HW, Langmaid C, Zierski J
1-12
vances in Diagnosis and Therapy, Pia HW, Langmaid C, Zierski J
11-25
In: Spontaneous Intracerebral Haematomas. Advances in Diagnosis
and Therapy, Pia HW, Langmaid C, Zierski J (eds), Berlin, Heidel-
berg, New York, Springer-Verlag, 1980, pp. 11-25
29. Koga T, Yokoyama T: Surgical therapy of spontaneous intracere-
bral hemorrhage. Factors related to surgical results. Arch Neurol
13: 25-29, 1965
30. Benes V, Kouchik F, Obrovská D: Two types of spontaneous intracere-
bral hemorrhage due to hypertension. J Neurosurg 57: 509-
513, 1972
31. Pasztor E, Afra D, Orosz E: Experiences with surgical treatment of
intracerebral hemorrhage. Factors related to surgical results. Arch
Neurol 13: 25-29, 1965
32. Edlow J, Apuzzo M: Experience with surgical treatment of
hypertensive intracerebral hematomas (1955-1977). In: Spontaneous In-

Clinicopathological Study of Pontine Hemorrhage

KENJI NAKAJIMA, M.D.

SUMMARY This report concerns a clinicopathological study of 60 patients afflicted with primary pontine hemorrhage. The illness was fatal in 43, 17 patients survived. Ophthalmic signs, autonomic disturbances, and transient visual hallucination were observed and discussed. A ruptured microaneurysm within the border of a pontine hematoma was detected in this study, and in the first report of such a finding.

REPORTED SERIES of pontine hemorrhage published between 1951 and 1968 described its incidence as varying from 6–22% of intracerebral hemorrhage. Most of these reported cases were fatal; recent reports utilizing the CT scan for diagnosis have indicated that some cases of pontine hemorrhage may show good recovery. This report consists of a clinical and pathological analysis of 60 patients in whom survival occurred in 28.3%.

Clinical Material and Methods

A retrospective review of intracerebral hemorrhage was conducted in the Research Institute for Brain and Blood Vessels in Akita. The diagnosis of pontine hemorrhage was confirmed by autopsy, by evacuation of the hematoma (one patient) or by CT scanning; in the absence of this confirmatory evidence patients were not included even though strongly suggested from neurological symptoms and angiographic findings.

From the Department of Neurology, Research Institute for Brain and Blood Vessels-Akita, Akita, Japan.
Address correspondence to: Kenji Nakajima, M.D., Department of Neurology, Research Institute for Brain and Blood Vessels-Akita, Akita, Japan.
Received December 2, 1982; revision accepted February 28, 1983.

Results

Incidence

During the period April 1969–July 1982, 1033 patients with primary intracerebral hemorrhage were diagnosed in the Institute, 60 of whom suffered pontine hemorrhage—a incidence of 5.8%. Forty-nine were male and eleven were female. Ages ranged from 33 to 77, with a mean age of 51.1 years.

Clinical Manifestations

The clinical pictures are summarized in table 1 and 2. Forty-three of 60 patients died. Twenty-four were diagnosed before the availability of CT; all of these patients fell into coma within 6 hours after the onset and all died. The remaining 36 patients were diagnosed subsequently to the availability of the CT scanner; 19 patients died and the remaining 17 are alive, one patient in a state of coma vigilis, while the remaining 16 surviving patients are well. In fatal cases, severe disturbance of consciousness, headache, vertigo, motor disturbance and vomiting were the main symptoms at onset. Severe disturbance of consciousness was never observed in non-fatal cases; they were featured by motor disturbance, headache and vertigo.

Ninety-three percent of fatal cases fell into coma...
Hypertensive putaminal hemorrhage: treatment and results. Is surgical treatment superior to conservative one?
S Waga and Y Yamamoto

Stroke. 1983;14:480-485
doi: 10.1161/01.STR.14.4.480

Stroke is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1983 American Heart Association, Inc. All rights reserved.
Print ISSN: 0039-2499. Online ISSN: 1524-4628

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://stroke.ahajournals.org/content/14/4/480

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Stroke can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Stroke is online at:
http://stroke.ahajournals.org//subscriptions/