Effect of Selective Inhibitor of Thromboxane A2 Synthetase on Experimental Cerebral Vasospasm

TOYOKAZU FUKUMORI, M.D., EIICHI TANI, M.D., YUKIO MAEDA, M.D., AND ATSUKO SUKENAGA, M.D.

SUMMARY Experimental cerebral vasospasm was induced in the canine basilar artery by an intracisternal injection of fresh autogenous arterial blood. Delayed vasospasm was defined as a reduction to less than 75% of the caliber of control basilar artery 5 days after the intracisternal blood injection. A selective inhibitor of thromboxane A2 synthetase, sodium(E)-3-[4-(3-pyridylmethyl) phenyl]-2-methyl-2-propenoate, was infused intravenously for 1 or 2 hrs at 50 μg/kg/min in normal animals and in animals exhibiting vasospasm. Angiographic evidence of cerebral vasospasm was not reversed. Mean regional cerebral blood flow was not significantly increased in normal and vasospastic animals, but a mean difference of regional cerebral blood flow was significantly increased only in vasospastic animals. Mean arterial blood pressure and pulse rate were not seriously changed in normal and spastic animals. Another selective thromboxane A2 synthetase inhibitor, (E)-3-[4-(1-imidazolylmethyl)phenyl]-2-propenoic acid hydrochloride monohydrate, showed a similar effect on the caliber of the basilar artery, regional cerebral blood flow, blood pressure, and pulse rate, in vasospastic animals. Venous blood was taken from the internal jugular vein, and the mean platelet aggregation rate induced by 10 μg/ml of collagen was inhibited by the infusion of either selective inhibitor at 50 μg/kg/min for 2 hrs. However, mean platelet aggregation rates in vasospastic animals before and after treatment with either selective inhibitor were not significantly different to those in normal animals.

Effect of Intravenous Infusion of OKY-1581 or OKY-046 on Cerebral Blood Flow

Materials and Methods

Production of Delayed Cerebral Vasospasm

Experimental cerebral vasospasm was produced by a transorbital administration of 8 to 12 ml of fresh autogenous arterial blood into the chiasmatic cistern of mongrel dogs, weighing from 10 to 17 kg, before intravenous infusion of OKY-1581 or OKY-046, as reported previously.

Transfemoral vertebral angiography was carried out before and 5 days after the intracisternal blood injection and also at the end of intravenous infusion of OKY-1581 or OKY-046 for 2 hrs. The diameter of the basilar artery was measured on magnifying angiogram to examine occurrence of vasospasm and effect of OKY-1581 or OKY-046 infusion, and its true diameter was calculated from magnification rate. Delayed cerebral vasospasm was defined as a reduction to less than 75% of the caliber of the control basilar artery 5 days after the intracisternal blood injection, and its occurrence was 72.6% in the present model.

Measurement of Regional Cerebral Blood Flow

Mongrel dogs were sedated with intramuscular ketamine hydrochloride (10 mg/kg), and anesthesia was then induced with an intravenous pentobarbital sodium (15 mg/kg) and maintained with a nitrous oxide-oxygen mixture (70%-30%) delivered by an Acoma AR-300 intermittent positive pressure ventilator (Acoma Industrial Co., Inc., Tokyo, Japan) in open circuit. Muscular relaxation was provided with an intravenous half-hourly administration of pancuronium bromide (0.08 mg/kg). Body temperature was kept close to 37°C with a heating blanket, and arterial blood pressure was continuously monitored with a Statham P-23Db strain gauge transducer (Statham Laboratories, Inc., Hato Rey, Puerto Rico) connected to a cannula in the femoral artery. Arterial CO2 tension (PaCO2) was monitored by a Corning pH/blood gas 165 (Corning Glass Works, Corning, NY, U. S. A.) and kept at the desired levels throughout the experiments by adjusting the respiratory pump or by adding CO2 to the inspired gas.

The animal was fitted into a stereotaxic frame, and one or two occipital drill holes were made in the skull. One or two UHF-100 platinum electrodes (Unique
Medical Co., Ltd., Tokyo, Japan), 0.3 mm in diameter, were inserted through the drill holes into gyrus lateralis in the occipital lobe, 2.5 mm in length, and then the drill holes were filled with 2% Bacto-Agar (Difco Laboratories Inc., Detroit, Michigan, U. S. A.). The electrodes were connected to a PHG-201 UH-meter (Unique Medical Co., Ltd.) and measured regional cerebral blood flow (rCBF) by the hydrogen clearance technique. To permit full polarization and stabilization of the electrodes, the first measurement of rCBF was not made until a period of 45 min had elapsed from the initial electrode placement. Mean arterial blood pressure (MABP), pulse rate (PR), arterial blood gases and pH were examined during each measurement of rCBF.

After a resting rCBF was measured in normal or spastic animal, OKY-1581 or OKY-046 was dissolved in a cold saline and infused intravenously at 20 or 50 μg/kg/min for 1 and 2 hrs with a Harvard apparatus infusion/withdrawal pump model 932 (Harvard Apparatus Co., Inc., Millis, MA, U. S. A.). During the infusion, the infusing syringe was cooled by an ice bath. A cold saline infused at the same rate for 2 hrs had no effect on rCBF, MABP, and PR. OKY-1581 and OKY-046 were kindly supplied by Ono Pharmaceutical Co., Ltd., Osaka, Japan.

Platelet Aggregation Studies

Venous blood was taken from the internal jugular vein of 10 normal and 10 spastic animals before and after OKY-1581 or OKY-046 infusion at 50 μg/kg/min for 2 hrs. A mixture of 9 parts canine blood to 1 part 3.8% sodium citrate was centrifuged at 200 G for 10 min and platelet-rich plasma (PRP) was removed, and the remainder was processed for platelet-poor plasma by centrifuging at 2000 G for 10 min. The aggregation of platelet was induced by 5 to 20 μg/ml of collagen (Hormon-Chemie, Munich, Germany). After the addition of collagen to PRP at 37°C, the increase in light transmission was monitored by a Bryston aggregometer (Bryston Manufacturing Ltd., Rexdale, Ontario, Canada).

Statistical Analysis

The mean values of caliber of basilar artery and rCBF before and after OKY-1581 or OKY-046 infusion were analyzed by two-tailed t-test for uncorrelated pairs, but since rCBF, MABP, and PR were variable from animal to animal, their responsiveness to OKY-1581 or OKY-046 infusion is probably best expressed by their mean difference. The mean differences of caliber of basilar artery (ΔC), rCBF (ΔrCBF), MABP (ΔMABP), and PR (ΔPR) at the end of OKY-1581 or OKY-046 infusion, were analyzed by two-tailed t-test for correlated pairs.

Results

Effect of OKY-1581 or OKY-046 on Caliber of Basilar Artery

The mean value of calibers of 5 normal basilar arteries was not significantly changed by OKY-1581 infusion at 50 μg/kg/min for 2 hrs (table 1). Figure 1 demonstrated ΔC in each of normal animals treated with OKY-1581, and its mean value was not significant (table 2). Fifteen animals which showed less than 75% of the caliber of control basilar artery 5 days after the intracisternal blood injection, were used as spastic animals. The mean value of calibers of each 5 spastic basilar arteries at the end of OKY-1581 infusion at 20 or 50 μg/kg/min or OKY-046 infusion at 50 μg/kg/min for 2 hrs was not significantly changed (table 1). Figure 1 showed ΔC in each of spastic arteries treated with OKY-1581 or OKY-046, and their mean values also were not significant (table 2). Thus, the angiographic cerebral vasospasm was not significantly reversed by OKY-1581 or OKY-046 infusion for 2 hrs.

Effect of OKY-1581 or OKY-046 on Cerebral Hemodynamics

The mean values of rCBF, MABP, and PR in 5 normal animals at 30.4 ± 2.5 torr of PaCO₂ were 48.9 ± 4.8 ml/100 gr/min, 117 ± 8 mm Hg, and 120 ± 12 beats/min, respectively. The mean rCBF during OKY-1581 infusion at 50 μg/kg/min in normal animals was increased with the lapse of time, but the mean rCBF at the end of OKY-1581 infusion for 1 or 2 hrs was not significantly increased (table 1). Figure 1 showed ΔrCBF, ΔMABP, and ΔPR in each of normal animals...
treated with OKY-1581, and their mean values were not significant (table 2).

The mean values of rCBF at 30.4 ± 2.3 torr of PaCO₂ in each 5 spastic animals were 27.5 ± 9.1 ml/100 gr/min before OKY-1581 infusion at 20 µg/kg/min, 35.3 ± 9.2 ml/100 gr/min before OKY-1581 infusion at 50 µg/kg/min, and 27.6 ± 8.0 ml/100 gr/min before OKY-046 infusion at 50 µg/kg/min, and significantly decreased as compared to that in 5 normal animals (table 1). The mean rCBF during OKY-1581 infusion at 20 or 50 µg/kg/min or OKY-046 infusion at 50 µg/kg/min in spastic animals was increased with the lapse of time, except for the mean rCBF at the end of OKY-1581 infusion at 20 µg/kg/min for 1 hr, but the mean rCBF at the end of OKY-1581 infusion at 20 or 50 µg/kg/min for 1 or 2 hrs was not significantly changed as compared to those before OKY-1581 or OKY-046 infusion (table 1). Figure 1 exhibited ΔrCBF, ΔMABP, and ΔPR in each of spastic animals treated with OKY-1581 or OKY-046. The mean values of ΔrCBF in spastic animals were not significant at the end of OKY-1581 infusion at 20 µg/kg/min for 1 or 2 hrs, but significantly increased by OKY-1581 or OKY-046 infusion at 50 µg/kg/min for 1 or 2 hrs, as shown in table 2. The mean values of ΔMABP and ΔPR in spastic animals treated with OKY-1581 or OKY-046 were not significant, except for significant decrease of mean ΔMABP at the end of OKY-1581 infusion at 50 µg/kg/min for 2 hrs and significant increase of mean ΔPR at the end of OKY-1581 infusion at 50 µg/kg/min for 1 hr (table 2), both of which, however, were not seriously changed.

Table 2. Mean Values of ΔC, ΔrCBF, ΔMABP, and ΔPR at the End of OKY-1581 or OKY-046 Infusion in Normal and Spastic Animals

<table>
<thead>
<tr>
<th>Animal</th>
<th>n</th>
<th>OKY-1581 (µg/kg/min)</th>
<th>ΔC (mm)</th>
<th>ΔrCBF (ml/100 gr/min)</th>
<th>ΔMABP (mm Hg)</th>
<th>ΔPR (beats/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>5</td>
<td>50 1 hr</td>
<td>0±0</td>
<td>1.2 ± 5.0nst</td>
<td>-1.3 ± 2.3nst</td>
<td>0.8 ± 4.8nst</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 hrs</td>
<td>0±0ns</td>
<td>4.1 ± 3.9nst</td>
<td>-0.6 ± 4.1nst</td>
<td>2.4 ± 6.4nst</td>
</tr>
<tr>
<td>Spasm</td>
<td>5</td>
<td>20 1 hr</td>
<td>0±0</td>
<td>-0.2 ± 2.5nst</td>
<td>2.8 ± 5.2nst</td>
<td>0.6 ± 5.8nst</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 hrs</td>
<td>0±0ns</td>
<td>3.4 ± 2.7nst</td>
<td>-0.8 ± 2.6nst</td>
<td>1.0 ± 7.5nst</td>
</tr>
<tr>
<td>Spasm</td>
<td>5</td>
<td>50 1 hr</td>
<td>0±0</td>
<td>3.3 ± 2.3*</td>
<td>-2.4 ± 2.4nst</td>
<td>3.6 ± 2.5*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 hrs</td>
<td>0.1±0.1n</td>
<td>6.5 ± 2.0f</td>
<td>-3.0 ± 1.9*</td>
<td>3.0 ± 3.0*</td>
</tr>
<tr>
<td>Animal</td>
<td>n</td>
<td>OKY-046 (µg/kg/min)</td>
<td>ΔC (mm)</td>
<td>ΔrCBF (ml/100 gr/min)</td>
<td>ΔMABP (mm Hg)</td>
<td>ΔPR (beats/min)</td>
</tr>
<tr>
<td>Spasm</td>
<td>5</td>
<td>50 1 hr</td>
<td>0±0</td>
<td>3.5 ± 1.9f</td>
<td>-2.7 ± 3.4nst</td>
<td>-2.6 ± 8.5nst</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 hrs</td>
<td>0±0ns</td>
<td>4.5 ± 2.6f</td>
<td>-2.7 ± 3.1nst</td>
<td>-1.6 ± 5.6nst</td>
</tr>
</tbody>
</table>

Statistical analysis is examined by two-tailed t-test for correlated pairs.
NS: not significant, * = p < 0.05, † = p < 0.025, ‡ = p < 0.005.
Platelet Aggregation Studies

The platelet aggregation in response to collagen was variable from animal to animal, particularly when OKY-1581 or OKY-046 was infused. The shorter the lag time before the beginning of collagen-induced platelet aggregation was, the greater the platelet aggregation was, and the platelet aggregation was dependent upon the concentration of collagen added. In the present study, 10 \(\mu \text{g/ml} \) of collagen was adequate to examine the effect of OKY-1581 or OKY-046 on the platelet aggregation. When 10 \(\mu \text{g/ml} \) of collagen was added to PRP, the mean values of platelet aggregation rates before treatment with OKY-1581 or OKY-046 were not significantly different in 10 normal and 10 spastic animals, as shown in Table 3. The platelet aggregations in normal and spastic animals were inhibited by OKY-1581 or OKY-046 infusion at 50 \(\mu \text{g/kg/min} \) for 2 hrs, but their mean values were not significantly different in normal and spastic animals, and their mean percent inhibitions were 76.8 \(\pm \) 25.9 and 64.6 \(\pm \) 37.4% in normal and spastic animals treated with OKY-1581 and 63.0 \(\pm \) 28.0 and 61.9 \(\pm \) 42.4% in normal and spastic animals treated with OKY-046, respectively (Table 3). Representative tracings of platelet aggregation induced by 10 \(\mu \text{g/ml} \) of collagen in spastic animals before and at the end of OKY-1581 or OKY-046 infusion at 50 \(\mu \text{g/kg/min} \) for 2 hrs are shown in Figure 2.

![Figure 2](http://stroke.ahajournals.org/)

TABLE 3 Mean Platelet Aggregation Rate Induced by 10 \(\mu \text{g/ml} \) of Collagen and Mean % Inhibition of Platelet Aggregation at the End of OKY-1581 or OKY-046 Infusion in Normal and Spastic Animals

<table>
<thead>
<tr>
<th>Animal</th>
<th>n</th>
<th>OKY-1581 ((\mu \text{g/kg/min}))</th>
<th>Mean platelet aggregation rate (%)</th>
<th>Mean % inhibition of platelet aggregation (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>5</td>
<td>before 75 (\pm) 13</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>50 2 hrs 18 (\pm) 2</td>
<td>76.8 (\pm) 25.9</td>
<td></td>
</tr>
<tr>
<td>Spasm</td>
<td>5</td>
<td>before 84 (\pm) 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>50 2 hrs 30 (\pm) 31</td>
<td>64.6 (\pm) 37.4</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Animal</th>
<th>n</th>
<th>OKY-046 ((\mu \text{g/kg/min}))</th>
<th>Mean platelet aggregation rate (%)</th>
<th>Mean % inhibition of platelet aggregation (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>5</td>
<td>before 72 (\pm) 11</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>50 2 hrs 27 (\pm) 23</td>
<td>63.0 (\pm) 28.0</td>
<td></td>
</tr>
<tr>
<td>Spasm</td>
<td>5</td>
<td>before 80 (\pm) 11</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>50 2 hrs 33 (\pm) 40</td>
<td>61.9 (\pm) 42.4</td>
<td></td>
</tr>
</tbody>
</table>

Arterial pH in normal and spastic animals was not significantly changed throughout the experiment.

Discussion

OKY-1581 and OKY-046 are selective inhibitors of TXA2 synthetase.\(^{10-16}\) The concentrations of OKY-1581 and OKY-046 to induce 50% inhibition (ID\(_{50}\)) for TXA2 synthesis in rabbit platelets are 3 \(\times 10^{-9} \) and 1.1 \(\times 10^{-8} \) M, respectively.\(^{10,16}\) In addition, the molecular weights and the half lives are 275 and 10 min in OKY-1581 and 282.73 and 1.1 hrs in OKY-046, respectively.\(^{10,16}\) Consequently, the concentrations of OKY-1581 and OKY-046 at the end of infusion at 50 \(\mu \text{g/kg/min} \) for 2 hrs may theoretically be 3.3 \(\times 10^{-5} \) and 1.4 \(\times 10^{-4} \) M, respectively, which may be enough to inhibit TXA2 synthesis nearly completely.\(^{16}\) An intravenous infusion of OKY-1581 at 10 to 100 \(\mu \text{g/kg/min} \) for 1 hr in anesthetized baboons decreases thromboxane B\(_2\) (TXB\(_2\): the breakdown product of TXA2) plasma level and increases 6-keto-prostaglandin F\(_{1\alpha}\) (6-keto PGF\(_{1\alpha}\); the breakdown product of PGI2) level in most animals.\(^{17}\) An oral administration of OKY-1581 in humans and monkeys shows a dose-dependent inhibition of serum TXB\(_2\).\(^{14,15}\) Nevertheless, the intravenous OKY-1581 at 50 \(\mu \text{g/kg/min} \) for 2 hrs did not change significantly the caliber of normal canine basilar artery, and in addition, the intravenous infusion of OKY-1581 or OKY-046 at 50 \(\mu \text{g/kg/min} \) for 2 hrs failed to reverse the angiographic vasospasm in dogs.

Serum concentrations of TXB\(_2\), prostaglandin E\(_2\), and prostaglandin F\(_2\) are reportedly changed from 126 \(\pm \) 66, 3 \(\pm \) 4, 10 \(\pm \) 8 ng/ml to 5 \(\pm \) 1, 70 \(\pm \) 18, 63 \(\pm \) 2 ng/ml at 2 hrs after a subcutaneous administration of 100 mg of OKY-1581 in rabbit, respectively.\(^{11}\) Wong and Cheung\(^{18}\) show that 3 thromboxane synthetase inhibitors: 1-octyl-imidazole, 9,11-iminoepoxy prosta-5,13-dienoic acid, and 9,11-azo prosta-5, 13-dienoic acid, decrease TXB\(_2\) formation with a concurrent increase in prostaglandin F\(_{2\alpha}\) (PGF\(_{2\alpha}\)), prostaglandin E\(_2\) (PGE\(_2\)), and prostaglandin D\(_2\) (PGD\(_2\)), with PGE\(_2\) being the major product, in human platelets.
changes may occur after OKY-046 infusion. Since experimental cerebral vasoconstriction is produced by PGF\(_2\alpha\) and PGE\(_2\) in platelet, the non-significant change of the caliber of normal basilar artery at the end of OKY-1581 infusion at 50 \(\mu\)g/kg/min for 2 hrs might be due to an increased formation of PGF\(_2\alpha\) and PGE\(_2\) in platelet, and the failure to reverse the angiographic vasospasm with OKY-1581 or OKY-046 infusion might be due to an increased formation of PGF\(_2\alpha\) and PGE\(_2\) in platelet and increased PGE\(_2\) formation in spastic artery. However, an intracarotid infusion of PGF\(_2\alpha\) or PGE\(_2\) is reported to reduce CBF.

The reduced rCBF in spastic animals is similar to that in clinical cases, in which CBF falls after recent SAH, particularly in patients with severe vasospasm.

The reduced CBF in SAH could be also due to cerebral edema, intracranial hematoma, increased intracranial pressure, and hydrocephalus, in addition to vasospasm. The mean rCBF in normal and spastic animals was not significantly changed by OKY-1581 or OKY-046 infusion, but the mean \(\Delta\)rCBF in spastic animals was significantly increased by OKY-1581 infusion at 50 \(\mu\)g/kg/min for 1 (\(p < 0.05\)) or 2 hrs (\(p < 0.005\)) or by OKY-046 infusion at 50 \(\mu\)g/kg/min for 1 or 2 hrs (\(p < 0.025\)), despite no reversal of angiographic vasospasm. The fact that there were no serious influences of OKY-1581 or OKY-046 on MABP and PR is in agreement with data on OKY compounds in animals.

Thus, the significant increase of \(\Delta\)rCBF in spastic animals by OKY-1581 or OKY-046 may be due to the change of caliber of large extraparenchymal vessels, MABP, or PR, but to an amelioration of microvascular circulation. However, the mean \(\Delta\)rCBF in normal animals was not significantly increased by OKY-1581 infusion at 50 \(\mu\)g/kg/min for 1 or 2 hrs.

A significant increase in cerebral blood volume in Grade III and IV patients with severe diffuse vasospasm suggests that cerebral vasospasm consists of constriction of the large extraparenchymal vessels accompanied by massive dilatation of intraparenchymal vessels. Ettinger shows an increased coagulability in patients with SAH. An endothelial damage is a prominent feature and observed to extend back into sizable arterial branches in 119 autopsy cases with cerebral infarction following ruptured aneurysm, and Crompton further notes that arteries with endothelial damage are not thrombosed but associated with cerebral infarction. However, fibrin-platelet emboli formed on damaged vascular endothelium are not easily distinguishable in histological preparations. Thus, vasospasm could be not necessarily the only factor contributing to the morbidity and mortality of SAH, but rather set the stage for events which further decrease brain perfusion to lead clotting and platelet aggregation in the parenchymal microvasculature.

OKY-1581 or OKY-046 block platelet aggregation induced by arachidonic acid or collagen in rabbits and humans and prevent experimental thrombosis induced by arachidonic acid and AgNO\(_3\). The mean platelet aggregation rates and the mean percent inhibitions of platelet aggregation in spastic animals by OKY-1581 or OKY-046 infusion at 50 \(\mu\)g/kg/min for 2 hrs were not significant as compared to those in normal animals. However, OKY-1581 or OKY-046 infusion at 50 \(\mu\)g/kg/min increased \(\Delta\)CBF significantly only in spastic animals. Suzuki et al. report that only 2 of 9 patients with vasospasm show mild signs of cerebral ischemia by an oral administration of trapidil, an antagonist and selective synthesis inhibitor of TXA\(_2\).

Patients with SAH show an increase of PGF\(_2\alpha\) and PGE\(_2\) in cerebrospinal fluid, suggesting that arachidonic acid metabolites are synthesized as a result of SAH. Gaudet and Levine report, in gerbils subjected to unilateral carotid occlusion, that PGD\(_2\) and PGF\(_2\alpha\) levels are elevated in both hemispheres and 6-keto PGF\(_1\alpha\) is only slightly increased, particularly PGF\(_2\alpha\) level remaining elevated at 6 hrs after occlusion. Shohami et al. report, in rats subjected to severe incomplete cerebral ischemia, that PGE\(_2\) in the brain tissue accumulates during the first 5 min of ischemia and its level declines at 15 min and that TXB\(_2\) in the brain tissue remains high during the whole time course of experiment. The effect of PGD\(_2\) on the caliber of canine cerebral arteries is variable. The increased synthesis of PGF\(_2\alpha\), PGE\(_2\), or TXA\(_2\) in the ischemic brain tissue may constrict the local blood vessels, and diminish the local blood flow, but actually the parenchymal vessels dilate and CBF decreases in vasospasm. In addition, PGE\(_2\) and PGD\(_2\) antagonize human platelet aggregation. Similar prostaglandin products may be produced in the ischemic brain tissue in vasospasm, but the local microcirculation in vasospasm could be inexplicable only on the basis of the disturbed prostaglandin metabolism. However, it is shown that treatment with indomethacin prior to incomplete cerebral ischemia reduces the levels of PGE\(_2\) and TXB\(_2\) in rat ischemic brain tissue and accelerates EEG recovery after reperfusion, suggesting that indomethacin improves the post-ischemic reflow. Thus, the increased TXA\(_2\) production which may occur in the ischemic brain tissue in vasospasm, may diminish by the treatment with OKY compounds, thereby ameliorating the local microcirculation.

References

Effect of selective inhibitor of thromboxane A2 synthetase on experimental cerebral vasospasm.

T Fukumori, E Tani, Y Maeda and A Sukenaga

Stroke. 1984;15:306-311
doi: 10.1161/01.STR.15.2.306

The online version of this article, along with updated information and services, is located on the World Wide Web at: http://stroke.ahajournals.org/content/15/2/306

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Stroke can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at: http://www.lww.com/reprints

Subscriptions: Information about subscribing to Stroke is online at: http://stroke.ahajournals.org//subscriptions/