Hemolysate-Induced Contraction in Smooth Muscle Cells of the Guinea Pig Basilar Artery

SHIGERU FUJIWARA, M.D., AND HIROSI KURIYAMA, M.D., D. PHIL.

SUMMARY The hemolysate (10^-5-10^-2 times dilution; original hemoglobin concentration was 0.83 ± 0.10 x 10^-3M) evoked the contraction in a dose dependent manner, and this contraction was composed of low and high sensitive responses as estimated from the Eadie-Hofstee's plot. Indomethacin (10^-7-10^-5M) inhibited the latter component in the hemolysate-induced contraction. The membrane potential of smooth muscle cells was -50 mV and the cell was electrically quiescent. The hemolysate (>10^-2 times dilution) produced the contraction with no change in the membrane property. Carbocyclic thromboxane A_2 (cTXA_2; 2.8 x 10^-10M) produced the contraction without depolarization of the membrane, yet the TXA_2 synthesis inhibitor, OKY-1581 (10^-3M), had no effect on the hemolysate-induced contraction. PGE_1, PGE_2, and PGF_2 alpha (2.8 x 10^-10M) produced the contraction with no change in the membrane property. The contraction evoked by 2.8 x 10^-10M PGF_2 alpha corresponded well with that evoked by 3 x 10^-10 times dilution of the hemolysate. Removal of the endothelium by mechanical rubbing modified the hemolysate-induced contraction. Under the assumption that OKY-1581 is a selective inhibitor for TXA_2 synthesis, the major part of the contraction (the indomethacin sensitive component) of the basilar artery is postulated to be due to synthesis of the primary PG rather than TXA_2 by the hemolysate, yet the hemolysate itself, has to some extent a direct action in evoking the small contraction.

CEREBRAL VASOSPASM has a grave influence on the prognosis of patients with subarachnoid hemorrhage following ruptured cerebral aneurysms.1-2 The underlying mechanism is related to a complex of multiple factors, e.g. the hemolysate extracted from the subarachnoid clot, especially oxyhemoglobin (oxy Hb), plays an important role in the genesis of chronic vasospasm.3,4 and frequent associations of vasospasm with the presence of subarachnoid clot have been verified by computed tomography.5 Toda et alg reported that the Hb containing solution released vasoconstrictive substances from the canine cerebral artery, and thus the contraction evoked by this solution was inhibited when aspirin was added to the bath in vitro. However, the relaxation of the cerebral vascular tissue induced by aspirin was incomplete. Not only aspirin but other nonsteroid anti-inflammatory agents which possess a prostaglandin (PG) synthesis inhibiting action suppressed the hemolysate-induced cerebrovascular contraction, and differed in the actions were quantitative.6,7 On the other hand, activations of the arachidonic cascade related to generation of a vaso-

From the Department of Pharmacology, Faculty of Medicine, Kyushu University, Fukuoka 812, Japan.
Address correspondence to: Hiroshi Kuriyama, M.D., Department of Pharmacology, Faculty of Medicine, Kyushu University, Fukuoka 812, Japan.
spasms through the free radical reaction induced by oxy
Hb have been discussed.9 Superoxide scavenger and
superoxide dismutase, which modify phosphatidyl in-
ositol and other phospholipids contributing to the ara-
chidonic cascade, had no effect on the Hb-induced
vasospasm.3,4

The membrane and contractile properties of the
guinea pig and canine basilar arteries have been exten-
sively investigated,10-12 and in the present experiments
we attempted to clarify the mechanism of hemolysate
action on the guinea pig basilar artery, in vitro. We
found that PGs, especially PGF2α, play an important
role in the hemolysate-induced contraction. The un-
derlying mechanism, in relation to clinical cerebral
vasospasm was given attention.

Methods and Materials

Guinea pigs of either sex weighing 300-350 g were
decapitated, and the basilar artery carefully dissected
under a binocular microscope. The diameter of this
artery was between 0.2-0.3 mm. The basilar artery (10
mm in length) was mounted in an organ bath with a
capacity of 1.0 ml and a temperature of 35-36°C. In
superfusion with Krebs solution was carried out at the
rate of 2 ml/min, for recording the electrical and me-
chanical responses. With this procedure, the bath solu-
tion could be replaced completely within 30 sec.

To record the membrane potential, conventional
glass capillary microelectrodes filled with 3 M KCl
(the resistance of the electrode was 50-80 MΩ) were
used. The microelectrode was inserted from the outer
layer of the artery. To record electrotonic potentials,
application of electrical stimulation was made by the
partition stimulating electrode method by Abe and To-
mita,13 and a current pulse of 1-2 seconds in duration
was applied in the longitudinal direction of the vessel.

Mechanical responses were recorded by the method
described by Suzuki and Casteels;14 briefly, a pair of L-
shaped stainless rods, sharpened by electrolysis, was
inserted into a ring segment of about 0.2 mm width.
One of the rods was fixed to a manipulator and another
was connected to a tension recorder (TB-612T, Nihon-
Kohden).

Hemolysate was prepared by the following proce-
dures, i.e. heparinized whole blood (100 units of hepa-
arin for each 10 ml of blood) of the guinea pig was
spun at 3,000 r.p.m. for 30 minutes, and the superna-
tant and buffy coat were removed. The lower layer of
packed erythrocytes was pipetted off and washed three
times with three to five volumes of cold saline. With
these procedures, contamination by platelets could be
ruled out. The washed erythrocytes were lysed with the
addition of the same volume of distilled water, using
an electric blender. The lysed erythrocytes were spun
at 15,000 r.p.m. for 30 minutes, and the supernatant
was used as the original hemolysate. The final concen-
tration of the hemolysate in the bath was expressed
from a dilution of the original hemolysate with Krebs
solution, i.e. the dilution ratio 10⁻² times means the
concentration of hemolysate of 10⁻² times the original
hemolysate. The original hemolysate contained 0.83 ± 0.10 × 10⁻³M Hb, as measured by the cyanmethem-
globin method.15 Krebs solution served as the control
solution, and was of the following composition (mM): Na⁺, 137.4; K⁺, 5.9; Mg²⁺, 1.2; Ca²⁺, 2.5;
Cl⁻, 134.0; H₂PO₄⁻, 1.2; HCO₃⁻, 15.5; and glucose, 11.5. The solution was bubbled with 97% O₂ and 3%
CO₂, and the pH was kept at 7.2-7.3. Excess [K⁺]o
solution was prepared by replacing NaCl with equimo-
ral KCl isotonically.

The following drugs were used at concentrations
(molar concentrations) described in the results; indo-
methacin (Sigma), pentolamine and mepyramine
(Tokyo Kasei), methysergide (Sandoz), atropine
(Daiichi), theophylline and quinidine (Ishizu), apamin
(Serva), carbocyclic thromboxane A₂ (cTXA₂), OKY-
1581 (Ono) and prostaglandins F₂α, E₁, E₂ (Ono), dili-
tazem (Tanabe) and EGTA (Dozin).

Obtained values are expressed as the mean ± stan-
dard deviation (S.D.). Statistical significances were
determined using Student’s t-test, and probabilities of
less than 5% (p < 0.05) were considered to be
significant.

Results

Effects of Hemolysate on the Mechanical and Electrical
Properties of the Guinea Pig Basilar Artery

The hemolysate, (10⁻² times dilution) evoked the
contraction of smooth muscle cells in the basilar ar-
tery. The amplitude was about 0.77 times the 39.2 mM
[K⁺]o-induced contraction (fig. 1). The hemolysate-
induced contraction was composed of an initial phasic
and then tonic responses. To avoid alternations in the
ph and in the constitution of the perfusate, we used
10⁻² times dilution of the hemolysate, as the maximum
concentration. The minimum concentration of hemo-
llysate required to evoke the contractions was 10⁻³
times dilution and the contraction increased, in a dose-
dependent manner. Following pretreatment with indo-
methacin (IND) for 40 min, amplitudes of the hemoly-
sate-induced contraction were decreased, yet this
agent had no effect on the 39.2 mM [K⁺]o-induced
contraction. The inhibition of the hemolysate-induced

![Figure 1](http://stroke.ahajournals.org/)

Figure 1. Contraction evoked by application of 39.2 mM [K⁺]o or the diluted hemolysate (10⁻³, 10⁻² and 10⁻² times) and the effect of 10⁻⁴M indomethacin (IND) on these contractions. 10⁻⁴M indomethacin was preincubated for 40 minutes. Horizontal bars indicate the application of various agents.
protein, the smooth muscle cells in this tissue were electrically quiescent. As the concentration of the hemolysate (10^{-2} times dilution) the membrane potential was completely blocked, and a small amplitude of sustained contraction remained in any given concentration of the hemolysate (>3 	imes 10^{-4} times dilution). Therefore, in the following experiments, pretreatment with IND on tissues was over 40 minutes. Even with a high concentration of IND (10^{-4}M) given as a pretreatment, the hemolysate-induced contraction was not completely blocked, and a small amplitude of sustained contraction remained in any given concentration of the hemolysate (10^{-4} times dilution). Figure 2 shows the dose-response relationship of the hemolysate-induced contraction, and the effect of various concentrations of IND on the hemolysate-induced contractions. In concentrations over 10^{-3} times dilution, the hemolysate evoked the contraction, dose-dependently, however, with application of the hemolysate (>10^{-3} times dilution), a slope of the dose-response relation curve became steeper. Figure 2 shows the relationship as determined by the Eadie-Hofstee’s plot. Two components of the contraction were revealed. The inhibitory effect of IND on higher concentrations (10^{-3} times dilution) of the hemolysate-induced contraction was prominent, while with applications of lower concentrations (<3 	imes 10^{-4} times dilution) of hemolysate, IND had no effect on the contraction. Thus, it indicated that the hemolysate-induced contraction was composed of two responses, i.e. IND-sensitive and IND-less sensitive responses.

The resting membrane potential of smooth muscle cells of the guinea pig basilar artery was -51.2 ± 2.0 mV (n = 15) to the peak depolarization of -44.5 ± 1.6 mV (n = 15). The depolarization induced by the hemolysates was composed of a transient peak depolarization which gradually declined, to the control level repolarization of the membrane. Following pretreatment with 10^{-3}M IND for 40 minutes, the hemolysate-induced depolarization was inhibited (10^{-2} times dilution: -44.5 ± 1.6 mV, pretreatment with 10^{-3}M IND: -49.8 ± 1.1 mV, n = 15).

With alternate applications of the weak inward and outward current pulses (pulse duration: 2.0 sec) to the tissue in the presence of hemolysate (10^{-4} times dilution), the amplitudes of the electrotonic potentials were not altered (fig. 3 B 1). Applications of increased concentrations of the hemolysate (10^{-3} times dilution), transiently depolarized the membrane with the reduction in the amplitude of electrotonic potentials. The membrane was then, gradually repolarized to the resting level after 10–15 min in the presence of the hemolysate (fig. 3 B 2). In most cells of the guinea pig basilar artery, outward current pulses produced a rectification of the membrane, i.e. amplitudes of the electrotonic potential produced by inward current pulses were larger than those that produced by an equi-intensity of outward current pulses. On very rare occasions, smooth muscle cells showed a very high value of membrane potential (about -60 mV), and rectification of the membrane did not occur with applications of outward and current pulses. In these cells, the hemolysate (10^{-2} times dilution) depolarized the membrane to a greater extent than that observed in most of the muscle cells, and the spike potential was generated during the transient peak depolarization. The amplitude of spike potential was not in an ‘all or none manner’, and during repolarization of the membrane, generation of the spike potentials finally ceased in the presence of hemolysate.

Table 1 showed the effects of various antagonists for the known receptors on the hemolysate-induced contraction. The results indicated that the generation of the
hemolysate-induced contraction (the IND-sensitive and less sensitive components) was not due to activations of α-adrenoceptor, 5-hydroxytryptaminergic receptor, histaminergic H₁ receptor, acetylcholine receptor and purinergic P₁ and P₂ receptors.

Table 1. Effects of Various Chemical Agents on the Hemolysate-Induced Contraction of the Guinea Pig Basilar Artery

<table>
<thead>
<tr>
<th>Diluted hemolysate (10⁻² times)</th>
<th>Relative tension ± S.D. (n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pretreated with</td>
<td></td>
</tr>
<tr>
<td>Phenolamine 10⁻⁶ M</td>
<td>0.43 ± 0.09 (7)</td>
</tr>
<tr>
<td>Methysergide 10⁻⁶ M</td>
<td>0.42 ± 0.15 (7)</td>
</tr>
<tr>
<td>Mepyramine 10⁻⁶ M</td>
<td>0.47 ± 0.12 (6)</td>
</tr>
<tr>
<td>Atropine 5 × 10⁻⁶ M</td>
<td>0.48 ± 0.13 (6)</td>
</tr>
<tr>
<td>Theophylline 10⁻⁶ M</td>
<td>0.48 ± 0.10 (5)</td>
</tr>
<tr>
<td>Quinidine 10⁻⁶ M</td>
<td>0.50 ± 0.15 (5)</td>
</tr>
<tr>
<td>Apamine 10⁻⁷ M</td>
<td>0.50 ± 0.13 (3)</td>
</tr>
</tbody>
</table>

39.2 mM [K]₀ induced contraction was registered as 1.0.

Effects of Carbocyclic Thromboxane A₂ (cTXA₂) and Endothelium on the Hemolysate-Induced Contraction

TXA₂ is most unstable and to be inactivated within one minute. Therefore, in the present experiments synthesized stable TXA₂, cTXA₂ were used. CTX₂ (2.8 × 10⁻¹⁰M) evoked the contraction in the guinea pig basilar artery. As shown in figure 4 A, 2.8 × 10⁻¹⁰M cTXA₂ evoked the contraction and the amplitude was roughly the same as that evoked by the hemolysate in the concentration of 10⁻² times dilution. The cTXA₂ induced oscillatory contractions were superimposed on the tonic contraction. To investigate the contribution of the TXA₂ action on the hemolysate-induced contraction, we used OKY-1581, a thromboxane A₂ synthetase inhibitor. When OKY-1581 (10⁻⁵M) was treated for 20–40 minutes before application of the hemolysate, the subsequently evoked hemolysate-induced contraction was not affected (10⁻² times dilution: 0.57 ± 0.11, n = 6 and following pretreatment with 10⁻⁵M OKY-1581: 0.52 ± 0.08, n = 9 in comparison to the contraction evoked by 39.2 mM [K]₀) (fig. 4 B).
HEMOLYSATE-INDUCED CEREBRAL VASOCONSTRICTION/Fujiwara and Kuriyama

A 39.2mM(K)\textsubscript{o} Hemolysate 10-2 times dilution

B Hemolysate 10-2 times dilution pretreated with 10-5M OKY-1581

FIGURE 4. Contraction evoked by 39.2 mM [K]\textsubscript{o}, 10-2 times diluted hemolysate and 2.8 \times 10-6 M carbocyclic thromboxane A\textsubscript{2} (cTXA\textsubscript{2}) (A), and the effects of 10-5M OKY-1581 on the hemolysate-induced contraction (B). Horizontal bars indicate applications of the agent.

To investigate the contribution of endothelium to the hemolysate-induced contraction, the intimal surface was gently rubbed with a steel rod with a diameter of 0.1 to 0.2 mm that is equivalent to the lumen of the artery (histological observations were not made). As shown in figure 5, there was no marked difference in the amplitude of the phasic hemolysate-induced contraction between the tissues with and without an endothelium. The decay of the tonic response was slightly affected, i.e. the tissue with an intact endothelium evoked the phasic response and a gradual decay of the tonic response, while in tissue with an injured endothelium, the tonic response was retained (In 10-2 times dilution; 1.32 ± 0.14 times the control measured at 50% height of the tonic response, n = 5). Such sustained tonic response was occasionally seen during generations of the hemolysate-induced contraction. A rough manipulation of the tissue during the preparation may damage the endothelium, particularly in the small size of guinea pig basilar artery. These results show that the endothelium may play a minor role in the hemolysate-induced contraction.

Effects of Prostaglandins on the Membrane and Mechanical Properties of the Guinea Pig Basilar Artery

Figure 6 A shows the effects of prostaglandins (PGE\textsubscript{i}, E\textsubscript{i} and F\textsubscript{2\alpha}) on the smooth muscle cells. In concentrations below 2.8 \times 10-6 M, PGE\textsubscript{i}, PGE\textsubscript{2}, and PGF\textsubscript{2\alpha} did not alter the membrane potential (control: −52 ± 2.0 mV, n = 20, 2.8 \times 10-6 M PGF\textsubscript{2\alpha}: −51.6 ± 2.0 mV, n = 15, 2.8 \times 10-6 M PGE\textsubscript{i}: −53.4 ± 1.8 mV, n = 15, 2.8 \times 10-6 M PGE\textsubscript{2}: −51.4 ± 2.0 mV, n = 15) or the membrane resistance as measured from

FIGURE 5. Contraction evoked by 39.2 mM [K]\textsubscript{o} or 10-2 times diluted hemolysate, and the effects of endothelium rubbing on these contractions. Horizontal bars indicate applications of the agent.

FIGURE 6. Effects of prostaglandins (PGs) on the membrane potential and mechanical responses evoked from smooth muscle cells of the basilar artery. A. Relationships between membrane potential and various concentrations of PGs (• PGF\textsubscript{2\alpha}, ▲ PGE\textsubscript{i}, ■ PGE\textsubscript{2}). Vertical bars indicate 2 \times S.D. (n = 15 – 20 from 3 preparations). B. Effects of the hemolysate (○) or PGs (• PGF\textsubscript{2\alpha}, ▲ PGE\textsubscript{i}, ■ PGE\textsubscript{2}) on mechanical responses. Vertical bars indicate 2 \times S.D. (n = 5 – 10 preparations). The contraction evoked by 39.2 mM [K]\textsubscript{o} was registered as a relative tension of 1.0.
amplitudes of the electrotonic potentials evoked by alternatively applied weak intensities of outward and inward current pulses. As shown in fig. 6 B, PGF$_{2a}$ (2.8 \times 10$^{-6}$M) evoked the contraction which was slightly smaller than that induced by the hemolysate (10$^{-2}$ times dilution). PGE, and PGE$_2$ also evoked the contractions in the basilar artery, but these contractions were smaller than those evoked by equi-concentrations of PGF$_{2a}$. These results suggest that in concentrations below 2.8 \times 10$^{-6}$M, PGF$_{2a}$ evokes the contraction in smooth muscles of the guinea pig basilar artery with no change in the membrane potentials, in the same manner observed in the hemolysate-induced contraction (below 3 \times 10$^{-3}$ times dilution).

Ca Sources of Hemolysate-Induced and PGF$_{2a}$-Induced Contractions

Figure 7 shows the contraction evoked by high concentrations of [K]$_o$, hemolysate (10$^{-2}$ times dilution) and 2.8 \times 10$^{-6}$M PGF$_{2a}$ following treatment with Ca-free 2 mM EGTA containing solution, or 10$^{-4}$M diltiazem. As a Ca antagonist, the Ca channel blocker, diltiazem was used. With application of 39.2 mM [K]$_o$, 10$^{-2}$ times dilution of the hemolysate or 2.8 \times 10$^{-6}$M PGF$_{2a}$ in the presence of 2.5 mM [Ca]$_o$, the phasic and subsequently generated tonic contractions were evoked. The amplitude of the phasic response differed with the agents (10$^{-2}$ times dilution of the hemolysate: 0.60 \pm 0.08 (n = 10), 2.8 \times 10$^{-6}$M PGF$_{2a}$: 0.44 \pm 0.11 (n = 10), under the condition that the amplitude of 39.2 mM [K]$_o$-induced contraction was normalized as a relative tension of 1.0). In Ca-free 2 mM EGTA containing solution, the contraction produced by 39.2 mM [K]$_o$, was abolished within 1 min. Yet the phasic response remained, the tonic response was markedly inhibited in the hemolysate or PGF$_{2a}$-induced contractions. With application of 10$^{-6}$M diltiazem, the amplitude of the K-induced contraction was markedly reduced. The tonic but phasic responses of both hemolysate and PGF$_{2a}$-induced contraction were slightly inhibited. These results indicate that the main source of Ca in the production of contraction under conditions of excess [K]$_o$ was an influx of extracellular Ca rather than a release of Ca stored in the cell, while both the hemolysate and PGF$_{2a}$-induced contractions were mainly due to release of the Ca stored in the cell and only in part due to the influx of Ca.

Discussion

The present experiments showed that the hemolysate evoked contraction was not induced by the activation of known neurotransmitter receptors such as α-adrenergic, cholinergic, histaminergic H$_1$, 5-hydroxytryptaminergic and purinergic receptors. This contraction was composed of two responses; indomethacin sensitive and less sensitive ones. The indomethacin sensitive response produced by the hemolysate was considered to relate to the synthesized prostaglandin, as indomethacin inhibits cyclooxygenase activity, the enzyme which acts on the first step of arachidonic cascade. Indomethacin strongly inhibited the hemolysate-induced contraction with no effect on the K- or PG-induced contractions. Furthermore, to inhibit the hemolysate-induced contraction, over 40 min superfusion of indomethacin was required. These results also indicate that a nonspecific action of indomethacin can be ruled out.

In the presence of high concentrations of indomethacin (>10$^{-4}$M), a small amplitude of contraction persisted (indomethacin-less sensitive response), and this contraction remained following pretreatment with antagonists of the neurotransmitters or autacoids. Therefore, the small contraction may be evoked by the hemolysate itself as reported by Tanishima and Sano. For clarification of the nature of the contraction-evoked substance, further detailed experiments are underway. The inconsistent observations of effects of the hemolysate-induced vasospasm, in relation to the action of anti-inflammatory agents, in vivo and in vitro, may relate to the concentrations of the hemolysate used.

The hemolysate (10$^{-5}$ - 3 \times 10$^{-3}$ times dilution) evoked the contraction with no change in the membrane potential. Pharmacomechanical coupling may play a role in the generation of this contraction. In 10$^{-2}$ times dilution of the hemolysate, the membrane was depolarized with increase in the membrane ionic conductances. In the guinea pig basilar artery, as previously reported, there were a few cells with no rectifying property of the membrane. In these cells, depolarization of the membrane evoked a graded response or spike potential. The physiological significance of contribution of these two different types of cells remains to be clarified.

Thromboxane A$_2$ (TXA$_2$) is vasoconstrictor, and the potency of which was reported to be 100 to 1000 times stronger than primary PGs (PGE$_1$, E$_2$, F$_{2a}$), in the canine basilar artery. In the guinea pig basilar artery, cTXA$_2$ evoked the contraction and the potency was 100 times larger than that evoked by an equi-concentration of PGF$_{2a}$. Sasaki et al stated that the synthesis
of TXA₂, plays an important role in the generation of chronic cerebral vasospasm following subarachnoid hemorrhage, and that OKY-1581 prevented experimentally-induced vasospasm in the dog. In our experiments, OKY-1581 did not show any effect on the hemolysate-induced contraction in the guinea pig basilar artery. The endothelium seems to be capable of producing PGI₂, as related to vascular smooth muscle relaxation. Here, species differences are no doubt present. However Sasaki et al 28 and Maeda et al 29 examined prostaglandin synthetic activity in the canine basilar artery under conditions of experimentally-induced cerebral spasm, and found a diminution in the PG-I synthesis in the artery caused by a subarachnoid injection of blood. In our experiments, the role of the endothelium in the hemolysate-induced contraction was not prominent, therefore clear differences in the amplitude of hemolysate-induced contraction between the intact and injured endothelium cannot be defined.

Prostaglandins (PGE₂, E₂, F₂α) did not alter the membrane potential or the ionic conductance of the membrane, but did evoke a dose-dependent contraction. The potencies of the vasoconstrictive actions were in the order of PGF₂α > E₂ > E₁ in the guinea pig basilar artery. The pharmaco-mechanical coupling was evident in the PGs evoked contractions, as well as in the hemolysate-induced contractions (below \(3 \times 10^{-3}\) times dilution). The Ca sources in the evoked contraction were mainly release of Ca from the storage site in the intact and injured endothelium cannot be defined. The present results indicate that in the guinea pig basilar artery, the hemolysate produces the contraction which is partly evoked by the hemolysate itself and mainly due to stimulation of the basilar artery to produce the primary PGs. The participation of thromboxane A₂ synthesis to the contraction and significant role of endothelium were not observed in this experiment. However, these may play roles in making worse of cerebral circulation following initial vasoconstriction as induced by the action of the hemolysate.

Acknowledgment

We are most grateful to M. Ohara for reading this manuscript, and to Ono Pharmaceut. Comp. for providing prostaglandins, cTXA₂ and OKY-1581.

References

Containing solution. Presumably due to influxes of Ca activated by the hemolysate.
A Two-Year Longitudinal Study of Post-Stroke Mood Disorders: Dynamic Changes in Associated Variables Over the First Six Months of Follow-Up

ROBERT G. ROBINSON, M.D.,*† | LYN BOOK STARR, MSW‡ | JOHN R. LIPSEY, M.D.,* | KRISHNA RAO, M.D.,§ | AND THOMAS R. PRICE, M.D.†

SUMMARY We are prospectively studying a group of 103 stroke patients over the first 2 years after infarction to determine the variables which are associated with the development of depression. At both 3 and 6 months post-stroke, patients with left hemisphere infarcts showed a strong relationship between severity of depression and distance of the lesion on CT scan from the frontal pole. The strength of this association was unchanged from the immediate post-infarction period. In contrast, the correlation between degree of functional physical impairment and severity of depression steadily increased over the 6 month follow-up. The correlation between severity of depression and Mini-Mental score or between depression and social functioning score dropped between in-hospital and 3 months but then increased significantly between 3 and 6 months post-stroke. Age did not correlate with depression beyond the acute post-stroke period. Whether the increasing strength of the relationships between impairment and depression over the first 6 months post-stroke indicates that continued depression led to delayed recovery or whether continued severe impairments led to depression is not known, however, this issue will be addressed in further data evaluation from this prospective study.

DURING THE PAST SEVERAL YEARS we have been investigating mood disorders in stroke patients.1-9 We have reported that intrahemispheric as well as interhemispheric lesion location was important and that patients with left anterior strokes were significantly more depressed than patients with lesions of any other location.3,5,7 The importance of left anterior lesion location for depression held up even when we examined patients who had bilateral strokes4 and we have shown in several studies that the closer the lesion was to the frontal pole on CT scan, the more severe the depression.1,5,8

In addition to these studies of lesion location, we have been conducting a prospective study of stroke patients who were entered in the NINCDS Stroke Data Bank10 and have been following them over a two year post-stroke period. We have found that during the acute stroke period several variables were correlated with severity of depression, including anterior left hemisphere lesion location, the severity of impairment in activities of daily living, degree of cognitive impairment, the quality of available social supports and the patient’s age.6

We have recently begun to analyze the follow-up data from this group of patients. During the six month follow-up, the prevalence of clinically significant depressions defined as meeting DSM III symptom crite-
Hemolysate-induced contraction in smooth muscle cells of the guinea pig basilar artery.

S Fujiwara and H Kuriyama

Stroke. 1984;15:503-510
doi: 10.1161/01.STR.15.3.503

Stroke is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1984 American Heart Association, Inc. All rights reserved.
Print ISSN: 0039-2499. Online ISSN: 1524-4628

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://stroke.ahajournals.org/content/15/3/503