References

6. Tomsello F, Mariani F, Fieschi C et al: Assessment of Inter-
10. Department of Clinical Epidemiology and Biostatistics, McMaster University, Hamilton, Ontario (Sackett DL et al): Clinical dis-
11. Department of Clinical Epidemiology and Biostatistics, McMaster University, Hamilton, Ontario (Haynes RB et al): Clinical dis-
agreement: II. How to avoid it and how to learn from one’s mis-

Demonstration of Adenosine Receptors on Mouse Cerebral Smooth Muscle Membranes

DAVID W. BECK, M.D., HARRY V. VINTERS, M.D., STEVEN A. MOORE, M.D., PH.D.,
MICHAEL N. HART, M.D., FRITZ A. HENN, M.D., PH.D., PASQUALE A. CANCELLA, M.D.

SUMMARY Adenosine receptors have been identified on brain cortical membranes and microvascular preparations. However, they have not been demonstrated on specific microvascular elements in isolation. 2-3H-chloroadenosine was used as a ligand to investigate the presence of adenosine receptors on isolated mouse cerebral smooth muscle membranes. The binding studies reveal the presence of a high affinity binding site with a Kd value of 33.3 nM and a maximal binding capacity (Bmax) of 283 fmol/mg protein. These findings demonstrate that there is an adenosine receptor on cerebral smooth muscle membranes.

ADENOSINE has been proposed as a neuroregulator of cerebral blood flow because of the rapid rise in brain adenosine levels following hypotension, ischemia, seizures, and hypoxia and because adenosine is a potent vasodilator. In its proposed role of regulating cerebral blood flow it is speculated that adenosine may be produced at the glial foot process via 5' nucleotidase, released into the extracellular space, and bound to cerebral smooth muscle membranes resulting in relaxation of the vessel. There is some evidence to support this hypothesis. Adenosine receptors A1 and A2 have been identified on brain membranes and are associated respectively with a decrease and an increase in cyclic AMP production. Furthermore, increased smooth muscle cyclic AMP has been associated with vessel relaxation. Adenosine receptors on cerebral smooth muscle membranes, however, have never been demonstrated. Palmer, et al have shown adenosine receptors in capillaries of rat cerebral cortex coupled to adenylate cyclase. However, these microvessel preparations are impure, in that they contain several microvascular elements such as glia, endothelia, smooth muscle, and pericytes.

If indeed adenosine regulates cerebral blood flow via action on cerebral smooth muscle membranes, then receptors on specific microvascular elements need to be demonstrated in isolation. We report the results of binding studies of 2-3H-chloroadenosine with isolated mouse cerebral smooth muscle membranes. Our results show a high affinity receptor for 2-3H-chloroadenosine is present on cerebral smooth muscle membranes.

Methods

Cell Cultures
Isolation of mouse cerebral microvessels and derivation of cerebral smooth muscle cells and cerebral endothelial cells in tissue culture have previously been described from our laboratory. Cerebral smooth muscle cells are characterized by their broad, polygonally shaped morphology and possess many characteris-
Preparation of membranes

Cells were grown to confluence in 100 mm tissue culture dishes, scraped from the plastic with a "rubber policeman", and placed into centrifuge tubes with 50 mM Tris-HCl buffer solution (pH 7.4, consisting of 50 mM Tris-HCl, 25 mM MgCl₂, and 25 mM CaCl₂). Each experiment required cells from 20 dishes. The cells were disrupted in a Polytron (setting 5) for 30 seconds, and centrifuged at 30,000 × g for 10 minutes. The pellet was then frozen at −20°C until use. After thawing, the pellet was resuspended in 50 mM Tris-HCl buffer solution containing adenosine deaminase (Sigma type III, 2 I.U./ml) to destroy endogenous adenosine. This was incubated for 30 minutes at 37°C. Following incubation the homogenate was washed twice with 50 mM Tris-HCl and resuspended.

The incubation mixture for binding contained 50 nM of homogenate (approximately 0.3–0.8 mg protein) in 50 mM Tris-HCl buffer solution, 10 nM of 2-3H-chloroadenosine (10–12 Ci/mMol, Moravek Biochemicals) and 940 nM Tris-HCl to a final volume of 1.0 ml. For determination of nonspecific binding, 10 nM of 3H-chloroadenosine (16.2 nM) was added to 50 nM of homogenate along with 930 nM Tris-HCl buffer and 10 nM of 2-3H-chloroadenosine.

The incubation was carried out at 0–4°C for 30 minutes. At the end of the incubation 5 ml of ice cold buffer was added to the sample tube, and the sample was poured onto a 25 mm Whatman 6F/B filter under reduced pressure. The filter was then washed two times with 5 ml ice cold buffer. The radioactivity was measured on a Beckmann LS 7800. Protein content was determined by the Lowry protein assay.

Results

The results presented in figure 1a showed that specific binding of 2-3H-chloroadenosine to cerebral smooth muscle membranes appeared to be saturable when binding was measured at increasing concentrations (0–30 nM). Specific binding was also linear from 0.1 to 1.0 mg of membrane protein (data not shown). Analysis of the data by a Scatchard plot (figure 1b) indicates a linear plot with an apparent dissociation constant (Kd) of 33.3 nM and a maximum binding capacity (Bmax) of 283 fmoI/mg protein. Nonspecific binding was less than 20% of the total binding.

Discussion

Palmer et al have shown the presence of adenosine receptors coupled to adenylate cyclase activity in brain microvessel fractions using 2-chloroadenosine as a ligand. However, these preparations are impure, including elements such as pericytes, endothelium, smooth muscle, and glia. We have demonstrated a high affinity adenosine receptor for 2-3H-chloroadenosine on cerebral smooth muscle membranes with a Kd (33.3 nM) and Bmax (283 fmoI/mg protein). This binding is in close agreement with that reported by Wu and Philipson for 2-3H-chloroadenosine binding onto rat cerebral cortical synaptosomal membranes (Kd = 25.5 nM). Williams and Risley reported that 2-3H-chloroadenosine bound to deaminase treated rat brain membranes at two high affinity sites with Kd values of 1.31 nM and 16.2 nM. Our data is in agreement with the lower of the two (16.2 nM) affinities. The binding of 2-3H-chloroadenosine to microvessel fractions (Kd = 0.038 nM) is a higher affinity binding and may represent the first binding site (Kd = 1.31 nM) reported by Williams and Risley. There are at least two extracellular adenosine receptors associated with adenylate cyclase activity, and it is unclear whether 2-3H-chloroadenosine binds to the adenosine A1-receptor, associated with a decrease in cyclic AMP accumulation, or the adenosine A2-receptor, associated with an increase in cyclic AMP accumulation.

Adenosine, a potent vasodilator, has been proposed as a neuroregulator of cerebral blood flow via action on cerebral smooth muscle membranes. Our findings of a high affinity adenosine receptor on isolated cerebral...
smooth muscle membranes are consistent with this hypothesis. The action of adenosine with the brain microvasculature is undoubtedly complex and its interaction with specific microvascular elements is unclear. It has been shown that adenosine is taken up by isolated microvessels,
but cerebral endothelium and cerebral smooth muscle via a carrier-mediated system. Also, the affinity of uptake into isolated cerebral endothelium (Km = 5.0 μM) is greater than that into isolated cerebral smooth muscle cells (Km = 10.0 μM). These data suggest that cerebral endothelium membranes may serve to regulate extracellular adenosine concentrations while cerebral smooth muscle serves a more complex role: adenosine may bind to its membrane receptor, possibly resulting in increased intracellular cyclic AMP and vessel relaxation.

Conclusion

We have demonstrated a high affinity adenosine receptor on cerebral smooth muscle cells. These results are consistent with the hypothesis that adenosine regulates cerebral blood flow via action on cerebral smooth muscle.

Acknowledgements

The authors wish to thank Elizabeth Yoder and Karen Hansen for their expert assistance.

References

Demonstration of adenosine receptors on mouse cerebral smooth muscle membranes.
D W Beck, H V Vinters, S A Moore, M N Hart, F A Henn and P A Cancilla

Stroke. 1984;15:725-727
doi: 10.1161/01.STR.15.4.725

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://stroke.ahajournals.org/content/15/4/725

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Stroke can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Stroke is online at:
http://stroke.ahajournals.org/subscriptions/