Regional Cerebral Blood Flow, Glucose Metabolism, Protein Synthesis, Serum Protein Extravasation, and Content of Biochemical Substrates in Stroke-Prone Spontaneously Hypertensive Rats

W. Paschen, G. Mies, W. Bodsch, Y. Yamori,* and K.-A. Hossmann

Summary Stroke-prone spontaneously hypertensive rats with arterial blood pressure above 210 mmHg were taken for the present study after appearance of neurological symptoms. Regional cerebral blood flow, glucose metabolism, and protein synthesis rate were evaluated on the same brain section by means of triple-labelled autoradiographic techniques. Consecutive sections were used in the pictorial presentation of glucose, ATP, and serum protein extravasation. In addition, NADH-fluorescence was recorded.

Two different patterns of hypertension-induced brain lesions could be distinguished: in two animals sharply demarcated cysts were visible in the cortical grey matter. In these animals no regional inhomogeneities of flow and metabolism were present remote from the infarct. In contrast, in three animals cysts were located in the white matter, leading to pronounced hemodynamic and metabolic disturbances throughout the brain. It is concluded that edema-induced brain swelling was the main cause for reduction in blood flow and metabolism.

Material and Methods

Animal Material

Experiments were carried out in 5 stroke-prone spontaneously hypertensive rats (SHR-SP). The rats originated from a strain of animals which was raised in the laboratories of the Japan Stroke Prevention Centre (Izumo, Japan) according to the procedure described by Yamori et al. Selected animals with tail arterial blood pressure above 210 mmHg had been kept on a Japanese stack laboratory diet (SP diet, Funahashi Farm, Japan) until, after 4 to 10 months of age, neurological symptoms of stroke appeared. They were immediately shipped by air freight to the laboratory in Cologne, FRG, and after two days of rest during which they had free access to tap water and standard rat diet (sniff R, Versuchstier-Diäten GmbH, Soest, FRG), examined for hemodynamic and biochemical alterations as described below.

For comparison, a group of 3 normotensive BD-IX rats was also investigated. These animals were raised in the Cologne laboratory and were fed with standard rat diet ad libitum. The hemodynamic and biochemical studies were carried out in the same way as in the experimental group.

Surgical Procedure

Animals were anesthetized with 0.8% halothane. Both femoral arteries and veins were catheterized for recording of systemic blood pressure, tracer applica-
tion, and sampling of arterial blood. Following tracheotomy, animals were immobilized and artificially ventilated. Arterial blood gases and arterial pH were controlled intermittently and, if necessary, adjusted to physiological levels by appropriate setting of the respiration pump and infusion of sodium bicarbonate. Body temperature was kept constant at 37°C.

Triple-labelled Autoradiography

Regional blood flow, glucose consumption and protein synthesis were measured in the same animal with \(^{131}\)I-iodo-antipyrine (specific activity 7.45 mCi/mg), \(^{14}\)C-2-deoxyglucose (specific activity 300–350 mCi/mmol) and a mixture of 5 tritiated amino acids (total activity 0.5 mCi/100g), respectively. The isotopes were purchased from NEN Chemicals, Dreieichhain, FRG. First, a bolus of \(^{14}\)C-2-deoxyglucose (10 mCi/100g) was given intravenously for determination of glucose consumption according to Sokoloff et al. Twenty-five minutes later \(^{3}\)H amino acids (0.5 mCi/100g) were injected intravenously for determination of protein synthesis according to Bodsch (in preparation) and 44 min after deoxyglucose application \(^{131}\)-iodo-antipyrine was infused intravenously at a constant speed for 1 min for assessment of regional cerebral blood flow, as described by Sakurada et al. After tracer injections arterial blood samples were withdrawn for measuring specific amino acid radioactivity and for determination of the concentration of \(^{14}\)C-2-deoxyglucose, glucose and \(^{131}\)I-iodo-antipyrine; the time intervals chosen were as described in the original procedures. At the end of the \(^{131}\)I-iodo-antipyrine infusion the animals were decapitated into liquid nitrogen for rapid freezing of the brain.

Cryostat sections of 20 μ and \(^{131}\)iodine standards were immediately exposed for 24 hours on Kodak NMB film for recording of \(^{131}\)I-iodo-antipyrine radioactivity. At the same time radioactivity of arterial blood samples was measured and blood flow was calculated according to the equation by Sakurada et al.

After \(^{131}\)I-iodo-antipyrine had decayed for 8 weeks, sections were again exposed with \(^{14}\)C-standards for 14 days on Kodak NMB film for recording of \(^{14}\)C-radioactivity. Plasma concentration of \(^{14}\)C-2-deoxyglucose and glucose was determined, and glucose consumption was calculated according to Sokoloff et al. Since brain hypoglycemia influencing the lumped constant was not detected in the brains examined (see below) glucose consumption was calculated using the lumped constant of control animals as described by Sokoloff et al. Finally, \(^{14}\)C-radioactivity and free \(^{3}\)H amino acids were removed from the section by washing it for 14 hours in a mixture of 10% trichloacetic acid, 70% ethanol, 2% polyvinylpropilidone, 0.1% Nonident-NP-40, and radioactivity of \(^{3}\)H amino acids incorporated into proteins was determined by exposure to tritium sensitive film for 3 weeks. Protein synthesis rate was quantified in small tissue samples (0.5 mg) taken from the block from which cryostat sections were cut. The procedure used is described elsewhere and includes the determination of specific radioactivity of free amino acids, of amino acids bound to tRNAs, and of protein-incorporated amino acids, using high performance liquid chromatography. The numbers obtained were used to calibrate the autoradiograms by plotting protein synthesis rate against optical density of the corresponding brain regions.

The degree of cross contamination of the three autoradiograms was tested by exposing sections with appropriate standards of all three isotopes, and was found to be negligible.

Serum Protein Extravasation

Regional serum protein extravasation was evaluated by means of immunomethods described elsewhere.

Imaging of Biochemical Substrates

The regional tissue content of ATP and glucose was estimated on freeze dried brain sections by means of tracer techniques. \(^{14}\)C-2-deoxyglucose (10 mCi/100g) was given intravenously for determination the concentration of \(^{14}\)C-2-deoxyglucose, glucose and \(^{131}\)I-iodo-antipyrine; the time intervals chosen were as described in the original procedures. At the end of the \(^{131}\)I-iodo-antipyrine infusion the animals were decapitated into liquid nitrogen for rapid freezing of the brain.

Cryostat sections of 20 μ and \(^{131}\)iodine standards were immediately exposed for 24 hours on Kodak NMB film for recording of \(^{131}\)I-iodo-antipyrine radioactivity. At the same time radioactivity of arterial blood samples was measured and blood flow was calculated according to the equation by Sakurada et al.

After \(^{131}\)I-iodo-antipyrine had decayed for 8 weeks, sections were again exposed with \(^{14}\)C-standards for 14 days on Kodak NMB film for recording of \(^{14}\)C-radioactivity. Plasma concentration of \(^{14}\)C-2-deoxyglucose and glucose was determined, and glucose consumption was calculated according to Sokoloff et al. Since brain hypoglycemia influencing the lumped constant was not detected in the brains examined (see below) glucose consumption was calculated using the lumped constant of control animals as described by Sokoloff et al. Finally, \(^{14}\)C-radioactivity and free \(^{3}\)H amino acids were removed from the section by washing it for 14 hours in a mixture of 10% trichloacetic acid, 70% ethanol, 2% polyvinylpropilidone, 0.1% Nonident-NP-40, and radioactivity of \(^{3}\)H amino acids incorporated into proteins was determined by exposure to tritium sensitive film for 3 weeks. Protein synthesis rate was quantified in small tissue samples (0.5 mg) taken from the block from which cryostat sections were cut. The procedure used is described elsewhere and includes the determination of specific radioactivity of free amino acids, of amino acids bound to tRNAs, and of protein-incorporated amino acids, using high performance liquid chromatography. The numbers obtained were used to calibrate the autoradiograms by plotting protein synthesis rate against optical density of the corresponding brain regions.

The degree of cross contamination of the three autoradiograms was tested by exposing sections with appropriate standards of all three isotopes, and was found to be negligible.

Results

Control measurements: regional cerebral blood flow, glucose consumption and protein biosynthesis were obtained in a group of 3 normotensive BD IX rats which were submitted to the same anesthesia and the same surgical procedure as the experimental group. Cortical blood flow amounted to 1.34 ± 0.13 ml/g/min, glucose consumption to 0.40 ± 0.02 μmol g/min and protein synthesis rate (amino acid equivalents incorporated into proteins) to 85 ± 9 nmol/g min. Systemic arterial blood pressure during tracer application was 114.7 ± 19.2 mm Hg. All 5 stroke-prone spontaneously hypertensive rats (SHR-SP) exhibited neurological symptoms before induction of anesthesia. The most prominent feature was a distinct reduction of spontaneous motor activity, combined with neglect of cleaning behaviour. In one animal spastic paresis of the left hindlimb and a marked weakness of the right hindlimb were present. Epileptic seizures were not observed. During 0.8% halothane anesthesia and after termination of the surgical procedure, arterial blood pressure was 126 ± 15.7
mm Hg. This value was not significantly higher than that of the normotensive control group, but lower than in the awake animals which in their home laboratory before shipment exhibited a blood pressure of more than 200 mm Hg.

Histological examination of the cryostat sections revealed structural alterations in all 5 animals, but the size and localization of these lesions varied considerably. Two different patterns could be distinguished (fig. 1): in two animals huge, sharply demarcated cysts were visible in the cortical grey matter, located near the borderzone between the anterior and middle cerebral arteries (fig. 1A, B). In the other 3 animals cysts were present in the deep cerebral white matter (fig. 1C-E). These animals exhibited severe cerebral edema as evidenced by massive swelling of perifocal white matter. In the cysts blood flow, glucose metabolism and protein synthesis had ceased, and ATP and NADH-fluorescence were absent (fig. 2, 3). Glucose-induced bioluminescence, however, persisted indicating high glucose content of the cystic fluid.

In the two animals exhibiting cortical lesions no regional inhomogeneities of flow, metabolism and biochemical substrates were present remote from the lesion (fig. 2). The content of glucose and ATP was high, glucose consumption and protein synthesis were similar to that found in normotensive control animals (table 1). There was, however, a slight decrease of cortical blood flow. The demarcation of the lesions was sharp, and there was no rim of hyperemia or hypermetabolism, as previously observed in acute infarcts.20, 21

In the animals with white matter lesions, in contrast, pronounced disturbances were present throughout the brain (fig. 3). Blood flow, glucose metabolism, and the content of ATP were markedly and inhomogeneously depressed, particularly in the edematous white matter. In contrast, protein synthesis within the cerebral cortex was similar to that found in normotensive control animals (table 1). Glucose content was only slightly decreased (fig. 3E), indicating that depression of metabolism was not caused by insufficient glucose supply to the edematous tissue.

Inhibition of glucose metabolism correlated with the severity of brain swelling: in the brain of the animal exhibiting the most severe degree of brain swelling (fig. 1E) glucose metabolism was also most markedly reduced and amounted only to 30% of that of the normotensive control group.

Discussion

The strain of stroke-prone spontaneously hypertensive rats (SHR-SP) is a generally accepted model of cerebral infarction induced by chronic hypertension. In these animals hypertension leads to atherosclerotic alterations of the cerebrovascular system with ring-
like fat deposits in the circle of Willis and fibrinoid necrosis of the wall of intracerebral arterioles. The lesions are located mainly in the borderzones of the supplying arteries, indicating the importance of hemodynamic factors for the pathological process. This is also reflected by markedly reduced cerebral blood flow which can be improved by antihypertensive treatment.

In SHR-SP, mean arterial blood pressure rises above 200 mm Hg as a consequence of genetic predisposition in combination with a special salt-rich diet. In the rats used for the present investigation, average blood pressure amounted to only 126 mm Hg. This reduction was caused either by the transport or, more likely, by halothane anesthesia used during the surgical preparation. Although blood pressure was still within the autoregulatory range of SHR-SP a reduction of cerebral blood flow cannot be excluded. The flow measurements obtained, however, did not differ from previously reported values, and we therefore consider the present observations as representative for the normal hemodynamic state of these animals.

Previous morphological studies have revealed that infarcts in SHR-SP are mainly located in the cerebral cortex, whereas basal ganglia and thalamus are less frequently involved. Infarcts may lead to secondary lesions such as widespread rarefaction and cyst formation. In the present series of 5 experiments, only 2 animals exhibited this type of lesion. In the other 3 animals infarcts were located in the deep cerebral white matter. This difference of localization was associated with a different metabolic pattern. In animals with cortical defects glucose utilization and cerebral metabolism. When infarcts were located in the white matter, on the other hand, considerable brain swelling occurred with gross reductions of blood flow, glucose utilization, and ATP content throughout the whole brain. Only glucose content remained normal, indicating that the metabolic disturbances were not due to a reduction of glucose availability.

The different metabolic pattern correlated clearly with the degree of edema development. Cerebral infarcts are associated with permeability disturbances of the blood-brain barrier causing extravasation of serum proteins. The break-down of the barrier does not depend on the localization of the lesion, but the spread of edema is much faster and more extensive in the white matter than in the cortex. The reason is the geometrical configuration of the extracellular channels which in the white matter are arranged in parallel, whereas in the cortex they form a complex tortuous network. It is, therefore, not surprising that in the present investigation white matter lesions caused more pronounced edema and were associated with more severe metabolic disturbances than lesions of the same size located in the cerebral cortex. This observation is in line with numerous earlier reports which also stress the preferential formation of vasogenic edema in the white matter (for review see Baethmann).

An alternative explanation of the two different pathological patterns would be that these changes represent two different time points of the same pathophysiological process. However, this explanation is unlikely because it is not conceivable that either the grey matter or the white matter lesions are reversible at a later stage.

The combination of reduced blood flow, glucose utilization and ATP in the presence of normal glucose metabolism. When infarcts were located in the white matter, on the other hand, considerable brain swelling occurred with gross reductions of blood flow, glucose utilization, and ATP content throughout the whole brain. Only glucose content remained normal, indicating that the metabolic disturbances were not due to a reduction of glucose availability.

The different metabolic pattern correlated clearly with the degree of edema development. Cerebral infarcts are associated with permeability disturbances of the blood-brain barrier causing extravasation of serum proteins. The break-down of the barrier does not depend on the localization of the lesion, but the spread of edema is much faster and more extensive in the white matter than in the cortex. The reason is the geometrical configuration of the extracellular channels which in the white matter are arranged in parallel, whereas in the cortex they form a complex tortuous network. It is, therefore, not surprising that in the present investigation white matter lesions caused more pronounced edema and were associated with more severe metabolic disturbances than lesions of the same size located in the cerebral cortex. This observation is in line with numerous earlier reports which also stress the preferential formation of vasogenic edema in the white matter (for review see Baethmann).

An alternative explanation of the two different pathological patterns would be that these changes represent two different time points of the same pathophysiological process. However, this explanation is unlikely because it is not conceivable that either the grey matter or the white matter lesions are reversible at a later stage.

The combination of reduced blood flow, glucose utilization and ATP in the presence of normal glucose metabolism. When infarcts were located in the white matter, on the other hand, considerable brain swelling occurred with gross reductions of blood flow, glucose utilization, and ATP content throughout the whole brain. Only glucose content remained normal, indicating that the metabolic disturbances were not due to a reduction of glucose availability.

The different metabolic pattern correlated clearly with the degree of edema development. Cerebral infarcts are associated with permeability disturbances of the blood-brain barrier causing extravasation of serum proteins. The break-down of the barrier does not depend on the localization of the lesion, but the spread of edema is much faster and more extensive in the white matter than in the cortex. The reason is the geometrical configuration of the extracellular channels which in the white matter are arranged in parallel, whereas in the cortex they form a complex tortuous network. It is, therefore, not surprising that in the present investigation white matter lesions caused more pronounced edema and were associated with more severe metabolic disturbances than lesions of the same size located in the cerebral cortex. This observation is in line with numerous earlier reports which also stress the preferential formation of vasogenic edema in the white matter (for review see Baethmann).

An alternative explanation of the two different pathological patterns would be that these changes represent two different time points of the same pathophysiological process. However, this explanation is unlikely because it is not conceivable that either the grey matter or the white matter lesions are reversible at a later stage.

The combination of reduced blood flow, glucose utilization and ATP in the presence of normal glucose metabolism. When infarcts were located in the white matter, on the other hand, considerable brain swelling occurred with gross reductions of blood flow, glucose utilization, and ATP content throughout the whole brain. Only glucose content remained normal, indicating that the metabolic disturbances were not due to a reduction of glucose availability.

The different metabolic pattern correlated clearly with the degree of edema development. Cerebral infarcts are associated with permeability disturbances of the blood-brain barrier causing extravasation of serum proteins. The break-down of the barrier does not depend on the localization of the lesion, but the spread of edema is much faster and more extensive in the white matter than in the cortex. The reason is the geometrical configuration of the extracellular channels which in the white matter are arranged in parallel, whereas in the cortex they form a complex tortuous network. It is, therefore, not surprising that in the present investigation white matter lesions caused more pronounced edema and were associated with more severe metabolic disturbances than lesions of the same size located in the cerebral cortex. This observation is in line with numerous earlier reports which also stress the preferential formation of vasogenic edema in the white matter (for review see Baethmann).

An alternative explanation of the two different pathological patterns would be that these changes represent two different time points of the same pathophysiological process. However, this explanation is unlikely because it is not conceivable that either the grey matter or the white matter lesions are reversible at a later stage.

The combination of reduced blood flow, glucose utilization and ATP in the presence of normal glucose metabolism. When infarcts were located in the white matter, on the other hand, considerable brain swelling occurred with gross reductions of blood flow, glucose utilization, and ATP content throughout the whole brain. Only glucose content remained normal, indicating that the metabolic disturbances were not due to a reduction of glucose availability.

The different metabolic pattern correlated clearly with the degree of edema development. Cerebral infarcts are associated with permeability disturbances of the blood-brain barrier causing extravasation of serum proteins. The break-down of the barrier does not depend on the localization of the lesion, but the spread of edema is much faster and more extensive in the white matter than in the cortex. The reason is the geometrical configuration of the extracellular channels which in the white matter are arranged in parallel, whereas in the cortex they form a complex tortuous network. It is, therefore, not surprising that in the present investigation white matter lesions caused more pronounced edema and were associated with more severe metabolic disturbances than lesions of the same size located in the cerebral cortex. This observation is in line with numerous earlier reports which also stress the preferential formation of vasogenic edema in the white matter (for review see Baethmann).

An alternative explanation of the two different pathological patterns would be that these changes represent two different time points of the same pathophysiological process. However, this explanation is unlikely because it is not conceivable that either the grey matter or the white matter lesions are reversible at a later stage.

The combination of reduced blood flow, glucose utilization and ATP in the presence of normal glucose metabolism. When infarcts were located in the white matter, on the other hand, considerable brain swelling occurred with gross reductions of blood flow, glucose utilization, and ATP content throughout the whole brain. Only glucose content remained normal, indicating that the metabolic disturbances were not due to a reduction of glucose availability.
content, as observed in the edematous brain tissue of animals with white matter lesions, is on the first sight difficult to interpret. Reduced blood flow in the presence of normal tissue glucose content should lead to activation of anaerobic glycolysis, as has been previously observed in other conditions of mild ischemia. 27, 28 The low glucose utilization in the present experiments, therefore, must have another reason. One explanation could be that prolonged state of brain edema causes inhibition of glycolytic activity despite continuing glucose supply. Such disturbances have, in fact, been previously observed in brain regions reperfused after prolonged state of cerebral ischemia. 29 Another explanation is the partial volume effect of edematous tissue. White matter edema around infarcts is of the vasogenic type. 23 It therefore can be expected to fuse after prolonged state of cerebral ischemia. 29 An-
turbances following stroke, and therefore should be a main target for therapeutic interference.

Acknowledgments
The excellent technical assistance of Mrs. Beckmann, Miss Karen Bollhöfer, Mrs. Neuy, and Mrs. Sörensen, and the secretarial help of Mrs. Langer and Mrs. Hahnmann, are gratefully acknowledged.

References
1. Dawber TR, Wolf PHA, Colton Th, Nickerson RJ: Risk factors: Comparison of the biological data in myocardial and brain infarc-
8. Yamori Y, Horie R: Development course of hypertension and re-
gional cerebral blood flow in stroke-prone spontaneously hyperten-
10. Yamori Y, Horie R, Sato M, Fukase M: Hypertension as an impor-
tant factor for cerebral cerebrovascular atherosclerosis in rats. Stroke 7: 120–125, 1976
11. Mies G, Bodsch W, Paschen W, Hossmann K-A: Experimental application of triple-labeled quantitative autoradiography for mea-
14. Paschen W, Niebuhr I, Hossmann K-A: A bioluminescence meth-
22. Barry DJ, Strandgaard S, Graham DJ, Braendstrup O, Svendsen
23. Olsson Y, Crowell RM, Klatzo I: The blood-brain barrier to protein tracers in focal cerebral ischemia and infarction caused by occlu-
24. Klatzo I: Cerebral oedema and ischemia. In: Smith WT, Cavanagh
JB (eds). Recent Advances in Neuropathology. I. Edinburgh Lon-
27. Djuricic BM, Paschen W, Bosma H-J, Hossmann K-A: Biochemi-
28. Paschen W, Djuricic BM, Bosma H-J, Hossmann K-A: Biochemi-
ical changes during graded brain ischemia in gerbils. Part 2: Region-
29. Paschen W, Hossmann K-A, van den Berckhoff W: Regional as-
Regional cerebral blood flow, glucose metabolism, protein synthesis, serum protein extravasation, and content of biochemical substrates in stroke-prone spontaneously hypertensive rats.

W Paschen, G Mies, W Bodsch, Y Yamori and K A Hossmann

Stroke. 1985;16:841-845
doi: 10.1161/01.STR.16.5.841

Stroke is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1985 American Heart Association, Inc. All rights reserved.
Print ISSN: 0039-2499. Online ISSN: 1524-4628

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://stroke.ahajournals.org/content/16/5/841

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Stroke can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Stroke is online at:
http://stroke.ahajournals.org//subscriptions/