Substrate-Specific Stimulation by Glucagon of Isolated Murine Brain Mitochondrial Oxidative Phosphorylation

L.G. D’Alecy, D.M.D., Ph.D.,*† C.L. Myers, Ph.D.,† M. Brewer,* C.L. Rising,* and M. Shlafer, Ph.D.‡

SUMMARY Glucagon has been shown to increase further the enhanced tolerance for hypoxia of mice with elevated blood ketones and to stimulate ketone utilization by rat brain slices, suggesting that glucagon may affect brain metabolism. In addition to stimulating gluconeogenesis, glucagon alters the metabolism of mitochondria isolated from liver and heart. This study was designed to test whether glucagon can act directly and selectively on brain mitochondrial substrate oxidation. Mitochondria were isolated from normal murine brains using differential centrifugation through Ficoll gradients. Glucagon (3.6 μM) stimulated respiration in the presence of glutamate, and glutamate plus beta-hydroxybutyrate, but not in the presence of glutamate plus malate, succinate or beta-hydroxybutyrate alone. With glutamate as the substrate the hormone significantly increased State 3 oxygen consumption rates from control values of 91 mol O₂/mol of cytochrome aa₃/min to 117 mols O₂/mol aa₃/min (p < 0.0001), and also increased State 4 rates slightly but significantly. Glucagon did not change mitochondrial respiratory control ratios, but increased estimated rates of ATP synthesis from 434 (control) to 597 mols ADP consumed/mol aa₃/min (p < 0.0001). The data indicate that in vitro glucagon has a direct and substrate-specific stimulatory effect on isolated brain mitochondria. These substrate-specific effects were not altered when respiration was studied in the presence of postmitochondrial supernatant or exogenous 3',5'-cyclic AMP, indicating that glucagon, in addition to an in vivo action via activation of membrane-bound adenylate cyclase, can act, at least in vitro, directly and selectively on brain mitochondria. The results also support the postulate that glucagon’s substrate-specific stimulation of mitochondrial oxidative phosphorylation, although not by direct enhancement of ketone oxidation, may play a role in cerebral protection against hypoxic damage in instances when circulating hormone levels are high.

PREVIOUS STUDIES from our laboratory demonstrated that, when mice were placed in an hypoxic environment, those with elevated blood ketones survived up to five times longer than controls. Butanediol induced ketosis is also associated with a reduced neurologic deficit in the hypoxic rat. Furthermore, this enhanced hypoxic tolerance in mice was potentiated by exogenous glucagon (GG). In vivo studies on rat brain slices we found that GG stimulates the incorporation of the ketone beta-hydroxybutyrate (BHB) into carbon dioxide both in the presence or absence of added glucose. In addition, Harris et al have reported a stimulatory effect of GG on liver mitochondrial respiratory rates in the presence of BHB as a substrate. These results suggest an hypothesis that GG, in addition to its systemic effects, may increase hypoxic tolerance by modifying brain metabolism of ketones. The ability of glucagon (GG) to alter cell metabolism is widely recognized, but its mechanisms and sites of action remain to be fully elucidated. For example, acute GG treatment of intact rats increases hepatic mitochondrial respiration and calcium fluxes. Suzuki reported that intravenous injection of GG in rats in...
creases oxygen consumption of liver slices prepared only 15 minutes after hormone injection. To determine whether this response was due to a direct effect of GG, Siess and Wieland isolated hepatocytes from naive rats and showed that GG produced a 50% increase of ADP-dependent respiration. These and other studies are consistent with an hypothesis that GG exerts a respiratory stimulating effect on target cells. Glucagon has been reported to stimulate mitochondrial oxygen consumption in various preparations, but again, the mechanism is not known. Glucagon is traditionally thought to act on the plasmalemma to activate adenylate cyclase, stimulating production of cyclic-AMP. Halestrap recently concluded that GG stimulates the respiratory chain by stimulating electron flow between cytochromes c, and c. These studies indicate a role for GG in stimulating production of ATP, necessary for energy-requiring reactions of the cell. There is no conclusive evidence excluding the possibility that GG might exert its action on mitochondrial oxidative metabolism via direct intracellular action, or whether any of its metabolic effects can occur at sites other than the plasmalemma.

This study was designed to determine if there is a direct stimulation by GG of isolated brain mitochondrial respiration independent of cell membrane mediated activity. Specificity was examined by determining effects of GG in the presence of specific respiratory chain substrates (BHB, succinate, glutamate, malate), alone or in combination. The results support the hypothesis that GG exerts a substrate-specific stimulatory effect on isolated brain mitochondria. They also suggest a possible role for GG in the protection of the brain from hypoxic damage by stimulating or sustaining oxidative ATP production necessary for cellular function.

Materials and Methods

Animals

For each mitochondrial preparation 20–30 male Sprague-Dawley mice (strain HA-ICR) having an average body weight of approximately 25 g and free access to food and water were killed between 8:00 and 9:00 a.m. The animals were decapitated and the entire contents of the calvarium were removed and immediately placed in a beaker of cold isolation medium (0.3 M sucrose and 5 g/dl bovine serum albumin in 1 mM Tris-EDTA buffer, pH 7.40 at 4°C). This procedure took an average of 16 sec per mouse. Average brain wet weight was 360 ± 7 mg (mean ± 1 SEM). All remaining isolation steps were done at 4°C.

Mitochondrial Isolation

We used a modification of the protocol devised by Clark and Nicklas to obtain a preparation of primarily nonsynaptosomal ("free") mitochondria. The brains were washed free of extraneous blood with fresh isolation medium, then minced with scissors in a second aliquot of medium (4 ml per gram of brain wet weight). The tissue was transferred to a glass homogenizing vessel and homogenized with 10 upward and 10 downward passes of a motor-driven Teflon pestle (1,450 rpm, no-load speed) having a wall clearance of 0.66 mm. The tissue was homogenized further with two passes of a tight-fitting pestle (wall clearance 0.20 mm). Approximately 4 ml of the crude homogenate was saved on ice for later use. The homogenizing vessel and pestles were washed with fresh medium, and the washings plus additional fresh medium were added to the homogenate to give a dilution of 1 gm tissue per 20 ml of homogenate.

The remainder of the homogenate was centrifuged at 3,200 x g (average) for 10 min. The resulting supernatant was strained through gauze and centrifuged at 10,000 x g for 15 min. Four milliliters of the resulting postmitochondrial supernatant were saved on ice for later use. The crude mitochondrial pellet was gently rinsed with fresh medium to remove fluffy, brown or loosely-adhering material. In our initial experiments the pellet was sequentially washed with and gently resuspended in fresh medium, and centrifuged again at 10,000 x g for 15 min. This procedure was repeated twice to obtain the final mitochondrial fraction. However, in the majority of experiments the first mitochondrial pellet was washed once with fresh medium as described above, then mixed with and resuspended in 30 ml (approximately 5 volumes) of medium containing 3% (w/v) Ficoll-400 (Pharmacia), and 10 ml aliquots were layered over 30 ml of medium containing 6% Ficoll. This was centrifuged at 10,000 x g for 30 min. Pellets obtained after centrifugation through Ficoll-containing media were rinsed with and resuspended gently in Ficoll-free medium. The suspensions were combined, gently homogenized by hand with two strokes of a tight-fitting pestle, and centrifuged at 10,000 x g for 15 min. The final pellet was rinsed once and gently resuspended in a small volume of Ficoll-free medium to give a protein concentration of approximately 30 mg/ml, based on a Biuret assay using bovine serum albumin as a standard. Protein yields are shown in table 1.

Most of the mitochondrial preparation was used immediately for polarographic determination of oxidative phosphorylating activity. A small aliquot was frozen and stored at −79°C for later determination of cytochrome content.

Mitochondrial Respiration

We used a Gilson Oxygraph equipped with a Clark-type electrode to study mitochondrial oxidative phosphorylation. The standard assay medium contained 0.25 M sucrose, 5 mM K,HPO4, and approximately 1.2 mg/ml of mitochondrial protein in 15 mM morpholinopropane-sulfonic acid (MOPS) buffer (pH 7.40 at 28.5°C). Respiratory substrates studied were Tris-glutamate, Tris-malate, sodium beta-hydroxybutyrate, Tris-succinate (plus 1 µg rotenone/mg protein), or combinations of these substrates as noted below. A 1 mg/ml glucagon stock solution was prepared by dissolving GG in equal volumes of brain incubation medium and sufficient 3.6 N HCl to reach pH 2.5 to 3.0, and was stored at 4°C as recommended by the supplier.
Mitochondria Isolated by Differential Centrifugation With or Without Ficoll 400*

<table>
<thead>
<tr>
<th>Centrifugation</th>
<th>Without Ficoll</th>
<th>With Ficoll</th>
<th>p†</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protein yield</td>
<td>15.520±0.104</td>
<td>10.74±0.61</td>
<td>0.0006</td>
</tr>
<tr>
<td>(8)</td>
<td>(11)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cytochromes a + a₃</td>
<td>0.189±0.008</td>
<td>0.200±0.007</td>
<td>0.2908</td>
</tr>
<tr>
<td>(10)</td>
<td>(11)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cytochrome b</td>
<td>0.025±0.001</td>
<td>0.033±0.004</td>
<td>0.1303</td>
</tr>
<tr>
<td>(10)</td>
<td>(11)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cytochrome c</td>
<td>0.116±0.006</td>
<td>0.126±0.006</td>
<td>0.3009</td>
</tr>
<tr>
<td>(10)</td>
<td>(11)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cytochrome c₁</td>
<td>0.042±0.002</td>
<td>0.046±0.003</td>
<td>0.2631</td>
</tr>
<tr>
<td>(10)</td>
<td>(11)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Values reported are arithmetic means ± 1 SEM. Numbers in parentheses indicate the number of preparations from which reported data were obtained. Protein yield is expressed as mg protein recovered per gram of brain wet weight. Cytochrome content is expressed as nmols/mg of mitochondrial protein.

†Probability values (p) shown were calculated from nonpaired t-tests comparing yields or cytochrome contents of mitochondria recovered per gram of brain wet weight. Cytochrome content was determined using an Amino-Chance DW-2 spectrophotometer according to the method described by Williams.22 Both reference and sample cuvettes contained approximately 6 mg of mitochondrial protein and 0.5% sodium deoxycholate in 0.1 M potassium-phosphate buffer (pH 7.40), with a total cuvette volume of 2.0 ml. After recording a stable baseline over the wavelength range of 500 to 650 nm, the reference was oxidized by the addition of 10 μl of 50 mM K₃Fe(CN)₆ in phosphate buffer, and the sample was reduced by the addition of 10 μl of 50 mM L-ascorbic acid in phosphate buffer, plus a few grains of crystalline Na₂S₂O₄ were added and the scan repeated until there were no further changes in the spectra. Cuvette masks were used to minimize light scattering. Cytochrome content was calculated using equations and constants described by Azzone et al.23

When GG was used, we added 20 μl of the stock solution immediately after adding 2 mM substrate, 2 min before inducing State 3 respiration by ADP addition. Total assay volume was 1.605 ml. Thus, final GG concentration was 3.6 μM. The respiratory substrates used and the inclusion of GG were varied randomly, and the assays were generally run at least twice for each condition studied.

The data reported were obtained from 4 to 12 mitochondrial preparations. State 4 respiratory rates were determined for approximately 2 min at which time a known amount of Na₂-ADP (usually 500 nmoles; the exact concentration of the stock solution was determined spectrophotometrically) was added to induce State 3 respiration. When the mitochondria had returned to State 4 respiration a second aliquot of ADP was added so that respiratory rates and the ADP:O ratio could be measured in duplicate. Mitochondrial respiratory control ratios (RCR) were calculated as the quotient of the State 3 rate of oxygen consumption and the subsequent State 4 rate. When succinate was used as a substrate, mitochondrial respiratory control indices (RCI) were calculated as the quotient of the State 3 rate of oxygen consumption and the previous State 4 rate. The ADP:O ratio was calculated as the amount of oxygen consumed in the presence of a known amount of added ADP. The oxidative phosphorylation rate (OPR) was calculated as the product of the State 3 respiratory rate and the accompanying ADP:O ratio. The OPR estimates the rate of mitochondrial ATP synthesis, normalized per mg of mitochondrial protein or per mol cytochrome aa₃ per min. Maximal (uncoupled) rates were produced by addition of 2,4 dinitrophenol.

Oxygen consumption was computed according to the method of Chance and Williams.30 Oxygen solubility in the medium was first assumed to equal that for solubility in 0.155 N sodium chloride.31 To reduce data variability further, the oxygen solubility was also corrected to account for latitude, daily barometric pressure, ambient temperature, and the partial pressure of water at the cuvette temperature (28.5°C). Thus, the daily adjusted oxygen content ranged from 394 to 406 natsoms oxygen per ml of solution.

Cytochrome Content

Thawed mitochondria were diluted to a protein concentration of approximately 12 mg/ml with 0.1 M potassium phosphate buffer (pH 7.40). Cytochrome content was determined using an Amino-Chance DW-2 spectrophotometer according to the method described by Williams.22 Both reference and sample cuvettes contained approximately 6 mg of mitochondrial protein and 0.5% sodium deoxycholate in 0.1 M potassium-phosphate buffer (pH 7.40), with a total cuvette volume of 2.0 ml. After recording a stable baseline over the wavelength range of 500 to 650 nm, the reference was oxidized by the addition of 10 μl of 50 mM K₃Fe(CN)₆ in phosphate buffer, and the sample was reduced by the addition of 10 μl of 50 mM L-ascorbic acid in phosphate buffer, plus a few grains of crystalline Na₂S₂O₄ were added and the scan repeated until there were no further changes in the spectra. Cuvette masks were used to minimize light scattering. Cytochrome content was calculated using equations and constants described by Azzone et al.23

Chemicals and Reagents

Purified GG was a generous gift of Dr. M. A. Root of Lilly Research Laboratories (Indianapolis, IN). Fresh crystalline Na₂S₂O₄ was obtained from Fluka, AG. Ficoll 400 was purchased from Pharmacia. All other chemicals were purchased from Sigma Chemical Company (St. Louis, MO). All inorganic salts were reagent grade or better. All aqueous solutions were made with double-distilled water purified further by passing it through a Hydro Service 0A-18 organic adsorbent column and two D-18M mixed bed ion exchange columns (Hydro Services and Supplies Inc., Durham, NC).

Statistics

Experiments were designed so that the effects of GG addition on mitochondrial respiratory parameters could be evaluated using paired t-tests. Between-group comparisons of data obtained with different mitochondrial preparations under differing conditions were made using nonpaired (Student) t-tests. Exact probabilities were calculated using an Amdahl 470/v7 computer. Only differences achieving a "p" value less than 0.05 were considered statistically significant. Except where noted otherwise, data are reported as arithmetic means plus or minus one standard error of the mean (SEM).

Results

In order to assess the purity of the mitochondrial preparations, protein yields and cytochrome concentrations were determined for organelles isolated by protocols with or without centrifugation through Fi-
coll-containing isolation medium, as summarized in table 1. A typical cytochrome difference spectrum is shown in figure 1.

Figure 2 shows representative oxygen consumption records for two mitochondrial preparations studied in the absence and presence of GG with glutamate serving as the sole substrate. The major effects of GG in this tightly-coupled (mean RCR about 8) preparation were significant increases of both ADP-stimulated and basal oxygen consumption rates. Control respiratory data were comparable to those reported by others. Although slight differences may be explained in terms of isolation and assay protocols, animal species, and the use of whole brain rather than discrete brain regions.

Major functional indicators of mitochondria respiring with and without GG in the presence of glutamate and the other substrates or substrate combinations are summarized in table 2 and figure 3. Glucagon significantly increased both State 3 and State 4 respiratory rates (fig. 3), the ADP:O ratios, and the oxidative phosphorylation rate (table 2) of mitochondria utilizing glutamate as the sole substrate. Lack of an effect of the hormone on RCR was due to the fact that the significant increase of State 3 respiratory rates was accompanied by a slight but consistent and statistically significant (p = 0.0002) increase of State 4 respiration.

Combining glutamate with malate or with BHB increased both State 3 and State 4 respiratory rates (fig. 3) and OP rates were also increased significantly. However, based on nonpaired t-tests only the changes of State 3 respiratory rates were significantly greater with substrate combinations than with single substrates. Adding GG significantly (p = 0.0172) increased State 3 respiratory rates of mitochondria respiring in the presence of glutamate plus BHB (fig. 3), but did not further increase ADP-stimulated respiration of organelles respiring with glutamate plus ma-

![BRAIN MITOCHONDRIAL CYTOCHROME DIFFERENCE SPECTRUM](image)

Figure 1. Difference spectra were used to calculate cytochrome contents of partially-purified mitochondrial fractions. Wavelength pairs used were: cytochrome aa₃, 605–630 nanometers; b, 536–577; c₁, 540–554; and c, 535–550. Baseline (flat horizontal line) was manually set with potentiometers before oxidizing and reducing the reference and sample, respectively.
TABLE 2 Effects of Various Respiratory Substrates and of Glucagon (GG) on in vitro Performance of Isolated Murine Brain Mitochondria*

<table>
<thead>
<tr>
<th>Substrate</th>
<th>N</th>
<th>-GG</th>
<th>+ GG</th>
<th>-GG</th>
<th>+ GG</th>
<th>-GG</th>
<th>+ GG</th>
</tr>
</thead>
<tbody>
<tr>
<td>GLU</td>
<td>12</td>
<td>8.0 ± 0.4</td>
<td>8.2 ± 0.4</td>
<td>2.39 ± 0.06</td>
<td>2.56 ± 0.05</td>
<td>434 ± 36</td>
<td>597 ± 54</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(p = 0.6953)</td>
<td>(p = 0.0005)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAL</td>
<td>6</td>
<td>2.6 ± 0.1</td>
<td>2.6 ± 0.2</td>
<td>2.42 ± 0.06</td>
<td>2.37 ± 0.10</td>
<td>210 ± 10</td>
<td>251 ± 40</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(p = 0.8544)</td>
<td>(p = 0.6798)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SUC + ROT</td>
<td>6</td>
<td>2.8 ± 0.2</td>
<td>2.6 ± 0.2</td>
<td>1.70 ± 0.069</td>
<td>1.81 ± 0.02</td>
<td>338 ± 10</td>
<td>336 ± 40</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(p = 0.4046)</td>
<td>(p = 0.2271)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BHB</td>
<td>11</td>
<td>3.1 ± 0.5</td>
<td>2.9 ± 0.3</td>
<td>2.06 ± 0.07</td>
<td>2.22 ± 0.15</td>
<td>268 ± 34</td>
<td>291 ± 35</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(p = 0.6322)</td>
<td>(p = 0.1186)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GLU + MAL</td>
<td>4</td>
<td>8.5 ± 0.3</td>
<td>7.9 ± 0.2</td>
<td>2.42 ± 0.04</td>
<td>2.37 ± 0.09</td>
<td>897 ± 51</td>
<td>877 ± 49</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(p = 0.0403)</td>
<td>(p = 0.6200)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glu + BHB</td>
<td>7</td>
<td>5.9 ± 0.6</td>
<td>6.9 ± 0.7</td>
<td>2.44 ± 0.07</td>
<td>2.46 ± 0.04</td>
<td>744 ± 85</td>
<td>851 ± 63</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(p = 0.0803)</td>
<td>(p = 0.723)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Values reported are arithmetic means ± 1 SEM. Details of the experimental conditions are noted in the text.

Glucagon concentration was 3.6 μM.

T OPR = oxidative phosphorylation rate expressed as mol ADP/mol aa3 per min.

Discussion

The major points of the discussion focus on how our results could contribute to the understanding of the mechanism by which BHB plus GG prolong hypoxic survival time of the intact animal, and evidence for the cellular and a proposed subcellular action of GG on mitochondrial oxidative phosphorylation.

Possible Relationships to Hypoxic Tolerance: Clinical experience and data obtained with different animal models led us to predict that hypoxia involves an initial compromise of brain function followed by respiratory then cardiovascular collapse. Lundy et al2 have shown that rats exposed to hypoxia first lose brain electrical activity, approximately 84 seconds later stop breathing, and then approximately 71 seconds later experience cardiovascular collapse. Additionally, the prolonged hypoxic survival associated with induced ketosis in rats can be attributed to a prolonged time to cessation of brain electrical activity.3 Likewise, Herin et al26 and McDonald et al27 have found that, in hypoxic dogs, the EEG goes flat before the animal experiences cardiovascular collapse. Previous data from our laboratory show that mice with elevated blood ketones, either due to fasting or administration of the ketone precursor 1,3-butanediol, have increased tolerance to hypoxia.4 Direct administration of the ketone beta-hydroxybutyrate itself, combined with GG, also prolongs hypoxic survival of mice.5 Collectively, the data suggest that interventions prolonging brain electrical activity by a process presumably involving ketone metabolism may be influenced directly or indirectly by elevated levels of GG.

In the intact animal or tissue, hypoxia causes accumulation of lactic acid intracellularly, with stimulation then inhibition of glycolysis and subsequent suppression of ATP production. During hypoxia, neither aerobic (mitochondrial) metabolism nor glycolysis can produce ATP at a rate sufficient to maintain brain function. Isolated mitochondria are distinct from the
intact system because they can maintain energy production not only in a normoxic medium, but also until all available oxygen is depleted, or oxygen is zero (State 5 respiration) as originally defined by Chance. Several investigators have shown that acute systemic administration of GG stimulates oxidative phosphorylation of various hepatic and cardiac cell preparations, and recently Kirsch et al. have shown that in vitro addition of GG (3.8 μM final concentration) enhanced incorporation of BHB into CO₂ by rat brain slices. Our data indicate that GG does not stimulate ATP production by direct stimulation of beta-hydroxybutyrate oxidation. Thus it is possible that no relation exists between this in vitro stimulation and the increased protection of the mouse from hypoxia previously demonstrated in the presence of GG plus beta-hydroxybutyrate. If these in vitro metabolic data do relate to the intact animal, then high levels of glucagon might stimulate oxidation and ATP synthesis during hypoxia, in which tissue oxygen levels are reduced but all oxygen is not eliminated. Glucagon might confer protection by stimulating mitochondrial substrate oxidation and ATP production which had been suppressed by hypoxia. If this in vitro stimulation were to occur in vivo, then the increase in hypoxic tolerance could be accounted for by GG-sustained oxidative phosphorylation.

Potential Physiologic Relevance: Glucagon's stimulatory effect on respiration is thought to be mediated by activation of adenylate cyclase, producing an increase in cytosolic 3',5'-cAMP, and ultimately acting to stimulate electron flow between cytochromes c and c₁. Such evidence does not exclude the possibility that GG can also act directly on isolated mitochondria and specifically alter glutamate-supported oxidative metabolism.

A direct mitochondrial action would be independent of the membrane-associated 3',5'-cyclic AMP stimulation by hypoxia. If this

Table 3: Effects of Crude Brain Homogenate, Postmitochondriat Supernatant, and Added 3',5'-Cyclic Adenosine Monophosphate on Glutamate-Supported Mitochondrial Respiration and the Mitochondrial Response to Glucagon (GG)

<table>
<thead>
<tr>
<th>Addition</th>
<th>N</th>
<th>State 3 (moles O₂/mole aaj/min)</th>
<th>State 4 (moles O₂/mole aaj/min)</th>
<th>RCR</th>
<th>ADP:0</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>12</td>
<td>-GG 91±8 117±11 (p = 0.0002)</td>
<td>+GG 12±1 14±1 (p = 0.0002)</td>
<td>8.0±0.4 8.2±0.4 (p = 0.6953)</td>
<td>2.39±0.06 2.56±0.05 (p = 0.0005)</td>
</tr>
<tr>
<td>Crude homogenate*</td>
<td>5</td>
<td>186±6 208±10 (p = 0.0695)</td>
<td>49±3 60±5 (p = 0.0019)</td>
<td>4.1±0.2 3.6±0.3 (p = 0.6277)</td>
<td>2.00±0.08 1.96±0.11 (p = 0.6353)</td>
</tr>
<tr>
<td>Postmitochondrial†</td>
<td>8</td>
<td>89±4 108±7 (p = 0.0055)</td>
<td>12±0.4 16±1.0 (p = 0.0001)</td>
<td>7.6±0.3 7.0±0.2 (p = 0.1272)</td>
<td>2.46±0.11 2.44±0.05 (p = 0.7348)</td>
</tr>
<tr>
<td>3',5'-cAMP</td>
<td>4</td>
<td>109±15 135±21 (p = 0.0580)</td>
<td>15±1 16±1 (p = 0.0988)</td>
<td>7.6±0.3 8.6±0.9 (p = 0.2859)</td>
<td>2.49±0.07 2.47±0.08 (p = 0.7843)</td>
</tr>
</tbody>
</table>

Values shown are arithmetic means ± 1 SEM. Probabilities were obtained by comparing values with and without glaucagon using paired t-tests.

*These values were obtained by replacing 100 μl of incubation medium with 100 μl of brain homogenate (200 mg protein/ml). †These values were obtained by replacing 100 μl of incubation medium with 100 μl of the first postmitochondrial supernatant.
litation of the respiratory chain. When we added crude homogenate or postmitochondrial supernatant, it did not amplify the response to GG, but instead appeared to depress it, particularly in the case of crude homogenate (fig. 3). These additions produced a similar effect on State 3 and State 4 respiration in the absence of glucagon. However, the stimulatory effect of GG persisted, suggesting that a cytosolic or plasma membrane fraction (e.g. adenylate cyclase/cyclic-AMP) was not responsible for the substrate-specific stimulation. Furthermore, if the sole stimulatory effect of GG was mediated by 3',5'-cyclic AMP acting as a second messenger, then the direct addition of c-AMP to isolated mitochondria should have, but did not, blunt the GG stimulatory effect. Hoosien16 observed a three-fold maximal activation of adenylate cyclase over basal levels in response to GG at a concentration of 1 nM. Adenylate cyclase in turn elevates 3',5'-cyclic AMP to stimulate the electron transport chain as observed by Halestrap.15 Consistent with this, we found that 3',5'-cyclic AMP alone increased respiration. Nonetheless, GG further stimulated respiration, supporting the hypothesis of a direct stimulatory effect independent of membrane-associated regulation of 3',5'-cyclic AMP.

In order for our observation to have physiological relevance by direct mitochondrial stimulation, in vivo cellular internalization of GG will have to be demonstrated. Hoosien's in vivo demonstration of subcellular binding is supportive of internalization and intracellular action; however, in vivo identification of subcellular binding sites is not direct evidence of in vivo internalization of this polypeptide hormone. Although the concentration of GG used in the present study (3.6 nM) is high relative to in vivo plasma levels, in an in vitro study from our laboratory approximately 4 nM GG was used to stimulate the incorporation of ketones into carbon dioxide in rat brain slices.4 Pilkis et al 18 added GG to isolated hepatocytes and observed maximal inhibition with 1 nM GG. Hoosien et al observed half-maximal activation of adenylate cyclase at a concentration of 4.74 nM and maximal activation required concentrations of almost 1 nM GG. It is possible that the use of these high concentrations of GG may only have therapeutic relevance. However, it is possible that elevated levels of plasma GG may be seen in stresses such as hypoxia and starvation. In pathological stresses such as exsanguination, plasma GG levels of 0.7 μg/ml have been observed.29

One might expect that any direct hormonal action on mitochondria would show substrate specificity if it were important for metabolic regulation during altered metabolic states (i.e. in hypoxia). The specificity of GG stimulation is indicated by our observation that the hormone stimulates respiration in the presence of glutamate, but does not stimulate respiration supported by malate, succinate, BHB, or combinations of them. The lack of a respiratory stimulating effect of GG in the presence of glutamate plus malate can be explained by the fact that ADP-stimulated respiratory rates in the presence of glutamate plus malate were not appreciably different from maximal (uncoupled) rates of oxygen consumption measured in the presence of 2,4-dinitrophenol. However, the respiratory control was not changed by adding GG, indicating that the effect of GG is not on an uncoupling of oxidative phosphorylation.

In conclusion, GG stimulated both ADP-dependent and -independent oxygen consumption by isolated murine brain mitochondria. This stimulation occurs with glutamate as a substrate but not with malate, succinate, or BHB. In addition to membrane-associated stimulation of cellular respiration reported by others, these data support the hypothesis that in vivo GG can act directly and selectively on brain mitochondria to stimulate oxidative phosphorylation. These data also suggest a possible role for GG in the protection of the brain from hypoxic damage by sustaining mitochondrial oxidative phosphorylation necessary for brain cellular function.

Acknowledgement

We thank Dr Leena Mela for her suggestions during the development of this study, Dr Minor J. Coon for allowing us to use the Aminco Chance DW-2 spectrophotometer and Dr. Dennis Koop for assistance with the cytochrome assay.

References

15. Taylor WM, Reinhart P, Hunt NH, Bygrave FL: Role of 3',5'-cyclic AMP in glucagon-induced stimulation of ruthenium red insensitive calcium transport in an endoplasmic reticulum-rich frac-
Presynaptic Inhibitory Action of Adenosine on Neuromuscular Transmission in the Canine Cavernous Carotid Artery

SHIGERU FUJIWARA, M.D., D.M.Sc., NEAL F. KASSELL, M.D., TOMIO SASAKI, M.D., D.M.Sc., MASANORI YAMASHITA, M.D., D.M.Sc., MARIO ZUCARELLO, M.D.

SUMMARY We investigated the effect of adenosine on neurogenic contraction of the canine cavernous carotid artery, using an isometric tension recording device and transmural nerve stimulation. Adenosine, in concentrations under 10^{-5}M, had no relaxing effect on the contractions produced by high KCl solution or 10^{-5}M norepinephrine. Transmural nerve stimulation (stimulus: 1 msec duration, 100V intensity) evoked a frequency-dependent contraction, which was abolished by $3 \times 10^{-5}\text{M}$ tetrodotoxin. Adenosine in concentrations of 10^{-5}M and 10^{-4}M inhibited the neurogenic contraction at each frequency, more so in the low frequency range. This inhibitory effect of adenosine was significantly antagonized by 10^{-5}M theophylline. Pretreatment with $2 \times 10^{-5}\text{M}$ dipyridamole had no effect on neurogenic contractions, but augmented the inhibitory effect of adenosine. 10^{-5}M theophylline did not affect the neurogenic contractions. The findings that both dipyridamole and theophylline failed to affect the neurogenic contractions suggest that the presynaptic autoinhibition mechanism of adenosine may not be involved in neuromuscular transmission in this tissue. These results suggest that there is a presynaptic adenosine receptor in the nerve terminal which inhibits the release of neurotransmitter in canine cavernous carotid artery. It is also probable that the vasodilating effect of adenosine in the cavernous carotid artery is mainly due to its inhibitory effect on neurotransmission rather than to a direct relaxing effect on smooth muscle.

ADENOSINE can markedly affect the blood flow in the cerebral vascular bed as well as in various peripheral vascular beds. It is well known that the vasodilating action of adenosine is due not only to a direct inhibitory effect on vascular smooth muscle, but also to presynaptic inhibition of adrenergic transmission in peripheral vascular beds. However, there has been no extensive investigation into the vasodilating action of adenosine on the internal carotid artery system.

Recently, a great deal of evidence has been accumulated that the internal carotid artery system, as well as small pial vessels, play an active role in the regulation of cerebral blood flow, and an abundant efferent innervation by both adrenergic and cholinergic nerve fibers was demonstrated in the cavernous carotid artery (CCA). Furthermore, when we recorded the neurogenic contraction of canine CCA, the amplitude of these contractions was much larger than that of the basilar artery, and we found that the neuromuscular transmission mechanism of canine CCA was different from that of peripheral arteries (Fujiwara, S, unpublished data).

In this experiment, we investigated the effect of adenosine on canine CCA, especially concerning its effect on neurogenic contraction, in order to clarify the presynaptic role of adenosine and to discern the precise...
Substrate-specific stimulation by glucagon of isolated murine brain mitochondrial oxidative phosphorylation.
L G D'Alecy, C L Myers, M Brewer, C L Rising and M Shlafer

Stroke. 1986;17:305-312
doi: 10.1161/01.STR.17.2.305

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://stroke.ahajournals.org/content/17/2/305

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Stroke can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Stroke is online at:
http://stroke.ahajournals.org/subscriptions/