Aggregation of Multiple Risk Factors for Stroke in Siblings of Patients With Brain Infarction and Transient Ischemic Attacks

JULIO F. DIAZ, M.D.,* VLADIMIR C. HACHINSKI, M.D.,† LINDA L. PEDERSON, PH.D.,* AND ALAN DONALD, PH.D.*

SUMMARY Hypertension, heart disease, and diabetes are not only the major risk factors for stroke, but they tend to cluster in families. It is unknown, however, whether these conditions occur more frequently among relatives of patients with specific types of stroke as compared to non-relatives.

The frequencies of stroke and its major risk factors in two groups of subjects were compared. One group consisted of 76 siblings of 41 patients hospitalized with cerebral infarction and transient ischemic attacks in an investigative stroke unit; the other consisted of 55 siblings of the patients' spouses. The occurrence of these conditions in the relatives was determined from a questionnaire completed by the relatives and supported by information from the relatives' family physicians.

When considered separately, hypertension, heart disease, and stroke occurred in a small but not statistically significant excess among the relatives in-law. However, various combinations of two or three diseases, (including diabetes), occurred in 20.9% of the patients' siblings as compared to only 3.6% of the relatives in-law ($p < 0.001$).

These results suggest that living siblings of patients with cerebral infarction and transient ischemic attacks may have an increased risk of stroke and cardiovascular disease as a result of multiple risk factors operating simultaneously. Prevention programs among this high risk population may be particularly worthwhile.

SEVERAL STUDIES suggest that stroke occurs more frequently among first-degree relatives of patients with stroke than in the general population. This increased risk is probably explained, to a large extent, by the familial clustering of hypertension, heart disease, and diabetes — the major risk factors for cerebral infarction. Although several studies have shown an increased prevalence of hypertension, diabetes, and heart disease in the families of patients with stroke, the exact etiology of the strokes in the study patients has not been well defined. Therefore, conclusions cannot be reached for any specific type of stroke.

The objective of the study was to assess whether siblings of index patients with a well-defined diagnosis of cerebral infarction or transient ischemic attacks (TIA's) have an increased frequency of stroke and its major risk factors. Because of the difficulties involved in assembling a population-based comparison group, it was decided to include the siblings of the index patients' spouses as the comparison group. Despite some limitations that are discussed below, it was considered that the patients' spouses and their siblings would not only be very likely to participate, but also would resemble the study group in their sociodemographic characteristics.

Methods

The index patients were selected from consecutive cases admitted to the Investigative Stroke Unit of University Hospital, in London, Ontario, during a 4-month period in 1983 and 1984. Selection was based on a definitive diagnosis of brain infarction or transient ischemic attacks. The diagnoses were made by staff neurologists of the Unit based on history, physical examination, and appropriate investigations, including CT of the brain. Only patients 45 years of age and over were included, since cases below this age were few and the etiology of their strokes and TIA's varied.

During a personal interview at the hospital, each patient and his/her spouse, or their next of kin provided the names and addresses of their living siblings. Medical history information on deceased siblings, including cause of death, was also requested from the patients and spouses. All living siblings on whom an address was obtained were requested by mail, to fill out an enclosed questionnaire concerning personal medical history of stroke, hypertension, heart disease, and diabetes. Sociodemographic information was also requested.

Two follow-up mailings were made in order to increase the response rate. First, a reminder card was...
sent to all respondents two weeks after the initial mailing; second, a personal letter, a duplicate questionnaire, and a return envelope were sent two weeks after the reminder card to those who had not yet replied.

In order to verify responses to the questionnaire, a random subsample of 20% of the respondents was selected from six strata representing different combinations of the relationship to the patient or spouse, and the number of reported risk factors (none, one, two or more). Each individual was asked permission to contact his/her family physician. The physicians of those who mailed back a consent form were requested to fill out a brief questionnaire on the medical history of his/her patient. Agreement between the study subjects' and the family physicians' information was then assessed.

Results

During the study period, 52 patients with cerebral infarction and transient ischemic attacks were contacted. Ten (20%) of these patients were excluded from the study for the following reasons: (a) Under age 45, 6 cases; (b) divorced and were not able to provide any information on their spouses and relatives in-law, 3 cases; (C) did not speak English and no contact was made with relatives to obtain information, one case. Forty-two patients (80%) were asked to participate; all but one did so. All the spouses of 38 married patients agreed to cooperate with the study. Personal and medical information on three deceased spouses and their living relatives was obtained from the patients or the spouses' next of kin.

From the 41 patients included in the study, 24 (15 males and 9 females) were diagnosed as having a cerebral infarction; 17 (15 males and 2 females), as having transient ischemic attacks. The mean ages and standard deviations for the patients with cerebral infarction and transient ischemic attacks were 69.3 years (S.D. = 6.6) and 62.1 years (S.D. = 7.5), respectively. The same figures for the living spouses were 64.8 years (S.D. = 8.8) and 57.7 years (S.D. = 7.0), respectively.

Table 1 summarizes the numbers of brothers and sisters, alive or deceased, for patients and spouses.

<table>
<thead>
<tr>
<th>Relationship</th>
<th>Patients' Siblings</th>
<th>Spouses' Siblings</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total Alive Deceased</td>
<td>Total Alive Deceased</td>
</tr>
<tr>
<td>Brothers</td>
<td>83 46 37</td>
<td>63 34 29</td>
</tr>
<tr>
<td>Sisters</td>
<td>69 48 21</td>
<td>56 42 14</td>
</tr>
<tr>
<td>All</td>
<td>152 94 58</td>
<td>119 76 43</td>
</tr>
</tbody>
</table>

Discussion

These results suggest that siblings of patients with stroke and TIA's may not suffer an excess of hyperten-
sion, heart disease, and diabetes, when each of these conditions is considered separately. If an excess does exist, it may have been obscured by two issues related to the study design. First, it is known that spouses tend to exhibit similar prevalences of vascular risk factors. Thus, the use of spouses’ siblings as a control group to the study design. First, it is known that spouses tend to exhibit similar prevalences of vascular risk factors.12

Second, the study groups were assembled from patients hospitalized at a tertiary care center with particular expertise in cerebrovascular disease. This may make it difficult to generalize the present results to the families of all individuals affected with stroke and TIA’s in the general population, if those who attend this center are the more severe cases of stroke and TIA’s. Nevertheless, the finding of an aggregation of multiple risk factors for stroke in siblings of patients with cerebral infarction and TIA’s suggest that prevention programs among this high risk population may be particularly worthwhile.

The main finding of the study is the statistically significant aggregation of stroke risk factors within individuals among the patients’ siblings. This is particularly important because the risk of stroke increases with the number of risk factors present. It is possible that the siblings in the study, reflect, to some extent, the presence of multiple risk factors in the index patients.

Caution in interpreting these findings should be exercised for two reasons. First, no physical measurements were made, so that a number of individuals having undiagnosed risk factors may have been missed. Second, the study groups were assembled from patients hospitalized at a tertiary care center with particular expertise in cerebrovascular disease. This may make it difficult to generalize the present results to the families of all individuals affected with stroke and TIA’s in the general population, if those who attend this center are the more severe cases of stroke and TIA’s.

The main finding of the study is the statistically significant aggregation of stroke risk factors within individuals among the patients’ siblings. This is particularly important because the risk of stroke increases with the number of risk factors present. It is possible that the siblings in the study, reflect, to some extent, the presence of multiple risk factors in the index patients.

Caution in interpreting these findings should be exercised for two reasons. First, no physical measurements were made, so that a number of individuals having undiagnosed risk factors may have been missed. Second, the study groups were assembled from patients hospitalized at a tertiary care center with particular expertise in cerebrovascular disease. This may make it difficult to generalize the present results to the families of all individuals affected with stroke and TIA’s in the general population, if those who attend this center are the more severe cases of stroke and TIA’s.

Nevertheless, the finding of an aggregation of multiple risk factors for stroke in siblings of patients with cerebral infarction and TIA’s suggest that prevention programs among this high risk population may be particularly worthwhile.

References

![Table 2: Frequency of Stroke and Risk Factors among Patients' and Spouses' Siblings](image)
Effect of Carotid Artery Ligation and Infusion of Fluosol FC-43 Emulsion on Brain Surface Oxygen Tensions

J.R.D. LAYCOCK, M.D.,* H.B. COAKHAM, M.D.,† I.A. SILVER, M.D.,‡ AND F.J.M. WALTERS, M.D.*

SUMMARY In eight rabbits, the common carotid artery was ligated and multiple estimations of brain surface oxygen tension performed using a seven barrelled mini-electrode. In five rabbits ligation of the carotid artery resulted in impairment of cortical oxygenation. The remaining three rabbits showed no impairment in the supply of oxygen to the cerebral cortex after carotid occlusion. In the five rabbits who displayed a reduction in oxygen supply after carotid ligation, ventilation with 33% oxygen after the infusion of 15 ml/kg of Fluosol FC-43 produced an improvement in cortical oxygenation in only three of the five rabbits. When these animals were ventilated with 100% oxygen after carotid ligation and Fluosol infusion, oxygen supply in all five was commensurate with or greater than that during control conditions.

Stroke Vol 17, No 6, November-December 1986

THE ABILITY OF PERFLUOROCHEMICALS to act as oxygen and carbon dioxide carriers in place of hemoglobin was demonstrated in 1966.1 However it is only more recently that formulations of perfluorodecalin and perfluorotripropylamine emulsified in the non-ionic surfactant Pluronic F-68 (Fluosol-DA) have been found suitable for administration to humans.2 Because of the oxygen carrying capacity and relatively low viscosity of Fluosol compared with blood, there has been speculation whether this compound may improve ischemia in tissues whose perfusion has been reduced to critical levels. Some studies have suggested that it may have beneficial effects on cerebral ischemia in a variety of animal models and in humans.3-5

If multiple readings of tissue oxygen tension (PtO₂) are taken with electrodes small enough to resolve the gradients of oxygen tension between individual capillaries, it is possible to build up a picture of tissue oxygenation within the cerebral microcirculation.6

This study has used this technique for two purposes. Firstly, to investigate the effect of carotid occlusion on delivery of oxygen to cerebral tissue. Secondly, to study the effect of infusion of a Fluosol emulsion on cerebral oxygen supply after carotid occlusion.

Methods

1. The Rabbit Preparation

In eight half lop male rabbits weighing between 2.5 and 3.4 kg, anesthesia was induced by intramuscular injection of ketamine 15 mg/kg. A tracheostomy was performed, and mechanical ventilation instituted with nitrous oxide/oxygen (2:1) and halothane (0.5%). The level of ventilation was adjusted to maintain an arterial PCO₂ as near 40 mm Hg as possible. A peripheral venous line was placed for infusion of Hartmann’s solution at 5 ml/kg/hr, and a femoral arterial cannula inserted. Arterial pressure was continuously monitored via a Statham P23 pressure transducer and recorded on a Grass model 5D polygraph. End tidal PCO₂ was measured with a Beckmann LB2 CO₂ analyser, and arterial blood samples were taken regularly for analysis on an ABL 2 blood gas analyser.

The right common carotid artery was exposed, a suture placed loosely around it, and 1 ml of 0.5% lignocaine was instilled around the artery. A 1 cm diameter right sided craniotomy was performed, the...
Aggregation of multiple risk factors for stroke in siblings of patients with brain infarction and transient ischemic attacks.
J F Diaz, V C Hachinski, L L Pederson and A Donald

Stroke. 1986;17:1239-1242
doi: 10.1161/01.STR.17.6.1239

Stroke is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1986 American Heart Association, Inc. All rights reserved.
Print ISSN: 0039-2499. Online ISSN: 1524-4628

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://stroke.ahajournals.org/content/17/6/1239

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Stroke can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Stroke is online at:
http://stroke.ahajournals.org/subscriptions/