CEREBRAL VESSELS have a function of maintaining the blood flow relatively constant in response to a wide range of changes in blood pressure, i.e., autoregulation. A well known fact is that the autoregulatory capacity is impaired when associated with metabolic disorders of the ischemic brain. Recently, cerebral metabolism and circulation in the remote area apart from the ischemic lesion also have been found to be diminished, namely transhemispheric or transtentorial diaschisis, with the advent of the positron emission tomography. Another known fact is that during the acute stage of cerebral infarction, autoregulation is globally impaired, and that such dysautoregulation persists for a certain period of time, although its mechanism is still under dispute. Bilateral carotid artery ligation (BCL) readily produces cerebral ischemia in spontaneously hypertensive rats (SHR) but hardly in normotensive rats. Induced ischemic lesion is located in the cerebral cortex of the supratentorial portion but not in the cerebellum during the first few hours following BCL. Therefore, by using this animal model, the autoregulation in the supratentorial and infratentorial portions was examined to clarify whether supratentorial ischemia influences autoregulatory capacity in the cerebellum.

Materials and Methods

Eight female SHRs, aged 5 to 7 months, were anesthetized with intraperitoneal amobarbital, 100 mg/kg body weight. Both femoral arteries were cannulated, one for continuous recording of the blood pressure and the other for anaerobic sampling of arterial blood and for exsanguination to reduce the blood pressure. Both common carotid arteries, separated carefully from the vagosympathetic trunks, were loosely encircled with sutures for later ligation. After tracheostomy, the rats were paralyzed with d-tubocurarine (0.45 mg/100 g body weight) and artificially ventilated with a Harvard respirator (HARVARD Co., MA, USA) in the room air. The hydrogen clearance technique was used to measure blood flow to the cerebral and cerebellar cortices. Details for this method have been described elsewhere. Briefly, the animal’s head was fixed in a head holder and two small burr holes were made on the right skull; one was 2 mm lateral to the bregma and the other 3 mm posterior and lateral to the confluens on the ipsilateral side. Teflon coated platinum electrodes, 200 μm in diameter, with platinum black on the tips were placed in the cerebral cortex (2 mm in depth) and in the cerebellum (2 mm in depth) by using a stereotaxic apparatus. The reference electrode was an Ag-AgCl inserted under the skin. Rectal temperature was kept close to 37°C by heat lamp. Arterial pH, pCO2, and pO2 were determined with an IL meter model 113 (Instrumentation Laboratory Inc., MA, USA).

Figure 1 shows the experimental protocol. Autoregulation of blood flow in the cerebrum and cerebellum was tested at three different stages; i.e., resting state, 30 min ischemia and 30 min recirculation following 1 hour ischemia. Stepwise reduction of the blood pressure, by 15 and 30% of the resting value, was induced by withdrawing blood and maintained at each level for

SUMMARY Autoregulation of cerebral (CBF) and cerebellar blood flow (CeBF) was studied before, during and after acutely induced cerebral ischemia in spontaneously hypertensive rats. Cerebral ischemia of the supratentorial portion was induced for one hour by bilateral carotid artery ligation (BCL). The animals were artificially ventilated and the blood flow was measured with a hydrogen clearance technique. To test the autoregulation, the blood pressure was stepwise lowered by bleeding and maintained at a new level, i.e., 15% or 30% lower than the baseline values before, during and after cerebral ischemia. At the preischemic state, CBF and CeBF were 52.1 ± 6.2 and 58.9 ± 4.6 ml/100 g/min (mean ± SEM), of which autoregulations were normally preserved. Following BCL, CBF was markedly decreased to about 10% of control value while CeBF was minimally reduced to 46.9 ± 8.6 ml/100 g/min (80%). At the ischemic state, CBF became almost zero flow during hypotension. CeBF was also reduced to 74% and further to 58% of the resting value by 15% and 30% decrease in the blood pressure, respectively, indicating impaired CeBF autoregulation. At the 30 min post-ischemic state, CBF was recovered to 48.0 ± 4.9 and CeBF to 53.9 ± 5.4 ml/100 g/min. Autoregulation of CBF was still abolished, whereas CeBF was kept constant by 15% fall of blood pressure and slightly reduced to 84% by 30% hypotension, indicating almost recovery of CeBF autoregulation. The present results suggest that autoregulatory function of the cerebellum may be modulated to some degree by the supratentorial brain but a more likely explanation for the results in the present work is the loss of perfusion pressure in cerebellar vessels.

Address correspondence to: Osamu Shiokawa, M.D., Second Department of Internal Medicine, Faculty of Medicine, Kyushu University, Maidashi 3-1-1, Fukuoka-City, Japan 812.

Received May 29, 1985; revision #2 accepted April 3, 1986.
Hypotension

CBF, CeBF

Recl.

BCL

1 hr. ischemia

Recl.: Reclreculation

CBF: Cerebral blood flow

CeBF: Cerebellar blood flow

FIGURE 1. Experimental protocol. Autoregulation in the cerebrum and cerebellum was investigated before, during, and after cerebral ischemia induced by carotid ligation.

5 to 10 min during CBF measurement in each study. Immediately after testing, blood withdrawn was reinfused into the cannulated femoral artery.

The rat's brain was macroscopically examined after termination of the experiment. When either an improper placement of the electrode or macroscopical tissue damage by inserting the electrode was found, data were excluded from the present results.

CBF and CeBF before hypotension at pre-ischemic state were compared by Student's t-test. The statistical significance of the differences of the blood flow before and during stepwise blood pressure reduction was assessed by paired t-test. Acid-base balances and blood gases were analyzed by analysis of variance. Significance was determined by a \(p \) value of less than 0.05.

Results

Arterial \(pCO_2 \) and \(pO_2 \) remained unchanged throughout the experiment while pH was slightly lowered during and after ischemia (table 1).

Before Brain Ischemia

Resting mean arterial pressure (MAP) was 187 ± 4 mm Hg (mean ± SEM). Baseline cerebral and cerebellar blood flows (CBF and CeBF) were 52.1 ± 6.2 and 58.9 ± 4.6 ml/100 g/min, respectively with its difference being not significant (table 1). When MAP was reduced to 85% (159 mm Hg) and 70% (131 mm Hg) of the resting MAP, CBF was actually unchanged, 52.4 ± 7.0 (101% of the resting flow) and 48.3 ± 5.8 ml/100 g/min (93%), respectively, indicating the preserved autoregulation. Similarly, CeBFs were also preserved well during stepwise hypotension, 58.9 ± 4.4 (100% of the resting flow) and 54.1 ± 4.2 ml/100 g/min (92%), respectively (figs. 2 and 5). The total amount of withdrawn blood was 3.6 ± 0.3 ml to reduce MAP by 30%.

During Brain Ischemia

At 30 min after BCL, MAP was elevated to 198 ± 7 mm Hg but CBF was reduced to 5.8 ± 2.0 ml/100 g/min (11% of the CBF before BCL, \(p < 0.005 \)) and CeBF was also slightly reduced to 46.9 ± 8.6 ml/100 g/min. Under graded hypotension to 168 mm Hg (85% of the resting MAP) and 139 mm Hg (70%), blood flow to the cerebrum was markedly reduced to almost zero flow. CeBF was also significantly decreased to 34.5 ± 6.6 (74% of the resting CeBF, \(p < 0.01 \)) at 168 mm Hg and 27.3 ± 5.4 ml/100 g/min (58%, \(p < 0.01 \)) at 139 mm Hg (figs. 3 and 5), indicating that autoregulatory activity was impaired in the cerebellum during ischemia. Withdrawn blood during hypotension amounted to 1.9 ± 0.2 ml.

After Recirculation

At 1 hr after BCL, the occluded carotid arteries were reopened by releasing the sutures.

At 30 min following recirculation, the reduced CBF and CeBF were recovered to 48.0 ± 4.9 and 53.9 ± 5.4 ml/100 g/min, respectively. MAP was slightly lower (156 ± 6 mm Hg) than that prior to BCL (table 1). During graded hypotension to 133 and 109 mm Hg, blood flow to the cerebrum was reduced to 38.4 ± 4.7 (80% of the CBF before hypotension, \(p < 0.05 \)) and 27.9 ± 3.7 ml/100 g/min (58%, \(p < 0.01 \)), respectively. CeBF was kept constant (50.7 ± 6.3, 94% of the CeBF before hypotension) at 133 mm Hg, and was slightly reduced to 45.2 ± 7.0 (84%, \(p < 0.05 \)) at 109 mm Hg (figs. 4 and 5). Total amount of withdrawn blood during hypotension was 2.3 ± 0.3 ml.

Discussion

Many previous studies have reported that cerebral autoregulatory function in the ischemic regions be-

Table 1 Acid-base Parameters, Mean Arterial Pressure, CBF and CeBF during Graded Hypotension

<table>
<thead>
<tr>
<th>Hypotension</th>
<th>Resting</th>
<th>Ischemia</th>
<th>Recirculation</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of rat</td>
<td>8 8 8</td>
<td>8 8 8</td>
<td>8 8 8</td>
</tr>
<tr>
<td>(pCO_2) (mm Hg)</td>
<td>31 ± 1 32 ± 1 31 ± 1</td>
<td>31 ± 1 31 ± 1</td>
<td></td>
</tr>
<tr>
<td>(pO_2) (mm Hg)</td>
<td>86 ± 3 90 ± 5 90 ± 5</td>
<td>89 ± 3 89 ± 3</td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td>7.41 ± 0.03 7.42 ± 0.02 7.38 ± 0.02</td>
<td>7.37 ± 0.02 7.37 ± 0.02</td>
<td></td>
</tr>
<tr>
<td>MAP (mm Hg)</td>
<td>187 ± 4 159 ± 4 131 ± 5</td>
<td>198 ± 7 168 ± 6 139 ± 7</td>
<td>156 ± 6 133 ± 6 109 ± 5</td>
</tr>
<tr>
<td>CBF (ml/100 g/ min)</td>
<td>52.1 ± 6.2 52.4 ± 7.0 48.3 ± 5.8</td>
<td>5.8 ± 1.0 1.4 ± 0.3* 0.7 ± 0.2*</td>
<td>48.0 ± 4.9 38.4 ± 4.7† 27.9 ± 3.7‡</td>
</tr>
<tr>
<td>CeBF (ml/100 g/ min)</td>
<td>58.9 ± 4.6 58.9 ± 4.4 54.1 ± 4.2</td>
<td>46.9 ± 8.6 34.5 ± 6.6† 27.3 ± 5.4‡</td>
<td>53.9 ± 5.4 50.7 ± 6.3 45.2 ± 7.0‡</td>
</tr>
</tbody>
</table>

Values are mean ± SEM, *\(p < 0.01 \) (vs. B in Ischemia), †\(p < 0.01 \) (vs. B in Ischemia), ‡\(p < 0.05 \) (vs. B in Recirculation), \(p < 0.05 \) (vs. B in Recirculation).

B = Before hypotension; CBF = Cerebral blood flow; CeBF = Cerebellar blood flow; MAP = Mean arterial pressure.
Cerebellar blood flow autoregulation

FIGURE 2. Changes in CBF and CeBF during graded hypotension before BCL. CBF and CeBF did not change significantly during hypotension. CBF = cerebral blood flow; CeBF = cerebellar blood flow; MAP = mean arterial pressure; BF = blood flow.

FIGURE 3. Changes in CBF and CeBF during graded hypotension at 30 min after BCL. CBF reduced to almost zero at 15% reduction of MAP. CeBF also significantly reduced concomitantly with reduction of MAP. CBF = cerebral blood flow; CeBF = cerebellar blood flow; MAP = mean arterial pressure; BF = blood flow.

FIGURE 4. Changes in CBF and CeBF during graded hypotension at 30 min after recirculation. CBF still decreased related to lowering in MAP. CeBF was maintained well until MAP was reduced by 30%. CBF = cerebral blood flow; CeBF = cerebellar blood flow; MAP = mean arterial pressure; BF = blood flow.

FIGURE 5. Percent changes in CBF and CeBF during graded hypotension before BCL, at 30 min after BCL and recirculation. CBF = cerebral blood flow; CeBF = cerebellar blood flow; MAP = mean arterial pressure.

Blood flow was severely impaired during BCL-induced cerebral ischemia and such dysautoregulation persisted for a while even after restoration of the blood flow to the ischemic lesion; and secondly, cerebellar autoregulatory function was also impaired but less markedly during cerebral ischemia, and its function was almost recovered after restored flow to the cerebrum. These results indicated that acute cerebral ischemia exerts undesirable effects on the blood flow regulation in the non-ischemic area apart from the ischemic lesion.

Although the mechanism as to why supratentorial ischemia leads to impaired infratentorial autoregulation was uncertain from this present study, we considered several possibilities to explain our findings. First, the increased intracranial pressure secondary to ischemic edema of the brain might have reduced the perfu-
sion pressure to infratentorial tissue resulting in cere-
bellar ischemia. In our study, this was not the case
because blood flow to the cerebellar cortex was 46.9
ml/100 g/min which was sufficiently higher than criti-
cal level of blood flow with induction of ischemic
damage. Our model found that one hour of ischemia
was an inadequate length of time to develop brain
dema. Also, our previous histological or biochemical
studies in our model did not show any ischemic
changes in the infratentorial tissue. Thus, the pres-
ent results could not be explained by ischemic meta-
bolic disorder in the cerebellum. Secondly, exsanguin-
ation to lower MAP may have reduced the cardiac
output and the perfusion to capillary or precapillary
beds. A known fact is that CBF remains unchanged
even when 20 ml/kg of blood is withdrawn or the
heart output and the perfusion to capillary or precapillary
beds.11 A known fact is that CBF remains unchanged
even when 20 ml/kg of blood is withdrawn or the
cardiac output is decreased by about 25%. The
amount of blood withdrawn to reduce the blood pres-
sure by 30% during ischemic period in this study aver-
aged 1.9 ml/rat or approximately 10 ml/kg of body
weight. Thus, cerebral blood flow reduction due to
blood loss seems unlikely. Thirdly, in recent years,
cerebral circulation and metabolism have been consid-
ered to be modulated in part by a neurogenic mech-
nism, e.g. activation of sympathetic and parasympa-
thetic nerves or other neurotransmitters.13,14 Cerebral
arteries are evidenced to be innervated by rather dense
sympathetic nerve fibers. Intensive investigations have
focused on the effect of that innervation on the respon-
siveness of cerebral vessels to the changes in intralu-
minal pressure. Although α-receptors in cerebral ves-
sels are less sensitive to their agonist than those in
other vessels,16 cervical sympathetic stimulation has
been found to constrict cerebral vessels to some extent.
Evidence shows that enhanced nonspecific discharge
of norepinephrine occurs in response to any kinds of
"stress." Myers et al18 reported 1.54 times increase in
plasma epinephrine in acute cerebral ischemia. Robin-
son et al19 and Kajihara et al20 also suggested that an
excessive amount of catecholamines are released in
non-ischemic as well as in ischemic brain in cerebro-
vascular accidents. If this is relevant to our model, the
adrenergic nervous system in the cerebellum was acti-
vated by cerebral ischemia and thus, dilatation of cere-
bellar vessels was inhibited in response to reduction of
intraluminal pressure, leading to a decrease in C boyfriend
pressure. In conclusion, autoregulation of the cerebellum may
be modulated to some degree by supratentorial brain
but a more likely explanation for the results in the
present work is simply the loss of perfusion pressure in
cerebellar vessels.

References

1. Baron JC, Bousser MG, Coma RD, Duquesnoy N, Castaigne P:
"Crossed cerebellar diaschisis": A remote functional depression
secondary to supratentorial infarction of man. J Cereb Blood Flow
Metab 1 (suppl 1): s55O-s551, 1981
2. Martin WRW, Raichle ME: Cerebral blood flow and metabolism in
3. Kushner M, Alavi A, Reivich M: Contralateral cerebellar hypome-
tabolism following cerebral insult: A positron emission tomograph-
4. Fujishima M, Sugi T, Morotomi Y, Omae T: Effects of bilateral
carotid artery ligation on lactate and pyruvate concentrations in
normotensive and spontaneously hypertensive rats. Stroke 6:
62-66, 1975
5. Fujishima M, Ogata J, Sugi T, Omoe T: Mortality and cerebral metab-
alization after bilateral carotid artery ligation in normotensive
and spontaneously hypertensive rats. J Neurol Neurosurg Psychi-
atri 39: 212-217, 1976
6. Fujishima M, Omoe T: Cerebral lactate, pyruvate and ATP concen-
trations and arterial acid-base balance at various time intervals
following bilateral carotid artery occlusion in normotensive and
spontaneously hypertensive rats. Acta Neurol Scand 54: 13-21,
1976
7. Aukland K, Bower BF, Berthier RW: Measurement of local blood
8. Astrup J, Symon L, Bruntson NM et al: Cortical evoked potential and
electroencephalogram K+ and H+ at critical levels of brain ischemia.
Stroke 8: 51-57, 1977
9. Ogata J, Fujishima M, Morotomi Y, Omoe T: Cerebral infarction
following bilateral carotid artery ligation in normotensive and
spontaneously hypertensive rats: A pathological study. Stroke 7:
54-60, 1976
10. Nakamoto Y: Recirculation of occluded carotid arteries in exper-
imental cerebral ischemia of SHR. Fukuoka Acta Medica 73:
507-531, 1982
11. Davis DH, Sundt TM Jr: Relationship of cerebral blood flow to
cardiac output, mean arterial pressure, blood flow, and alpha and
12. Chen RY, Fan FC, Schuessler GB et al: Regional cerebral blood
flow and oxygen consumption of the canine brain during hemor-
8: 551-557, 1980
14. Chan-Palay V: Innervation of cerebral blood vessels by norepi-
ephrine, indoleamine, substance-P and neuropeptide fibers and the
leptomeningeal indoleamine axons: their roles in vasomotor activ-
ity and local alterations of brain blood composition. In Neurogeni
Behavioral Performance of Rats Following Neonatal Hypoxia-Ischemia

RICHARD S.K. YOUNG, M.D.*, JOHN KOLONICH, B.S.,† CYNTHIA L. WOODS, M.S.,† AND SUSAN K. YAGEL, B.S.†

SUMMARY The behavioral performance of rats subjected in the neonatal period to hypoxia-ischemia at either 37°C or 21°C was compared to that of sham-ligated animals. Performance on complex motor tests was significantly delayed only in the hypoxico-ischemic 37°C rats. However, cognitive testing disclosed significant delay of spatial learning in animals subjected to hypoxia-ischemia at 21°C and those with gross infarction at 37°C. There was enhanced avoidance learning in the animals with gross infarction in the hypoxia-ischemia 37°C group. Hypoxic-ischemic damage in the neonatal rat at 37°C results in transient delay of complex motor skills, but longer lasting cognitive changes. Hypoxia-ischemia during hypothermia produces no motor deficits, although there may be similar alterations in learning.

Stroke Vol 17, No 6, 1986

THE LEVINE METHOD (unilateral carotid artery ligation and hypoxia) has been utilized by a number of investigators to study the histologic, metabolic and neurotransmitter alterations following hypoxic-ischemic injury in the neonatal rat. However, the behavioral consequences of neonatal hypoxia-ischemia induced by the Levine method have not been described.

The behavioral consequences of perinatal hypoxic-ischemic injury are of great interest since there is no consensus regarding the degree of functional recovery following unihemispheric brain injury in the neonatal period in either the human or experimental animal. In addition, there is considerable debate regarding cognitive abilities following hypoxia-ischemia during conditions of hypothermia. Our purpose was to study the motor development and cognitive performance of rats subjected to the Levine procedure as neonates during conditions of normothermia and hypothermia.

Methods

Seven day old Sprague-Dawley rats of both sexes (Charles River Laboratories) were anesthetized with halothane (1.5-3.5%) in oxygen by mask inhalation as previously described. The right common carotid artery was exposed and ligated. The animals were returned to their dams for a 3 hour recovery period. Following the recovery period, the animals were placed in air-tight 500 ml jars with continuous flow of humidified gas (8% O2, 92% N2) for 4 hours. During the hypoxic exposure, hypothermia was induced (or normothermia maintained) by immersing the jars in a water bath thermostatically regulated to maintain a temperature of 37°C or 21°C. Following the hypoxic exposure, animals were returned to their dams.

Control animals were similarly anesthetized; their carotid arteries were visualized, but not ligated. The control animals were then subjected to the same experimental protocol as the experimental animals, except that they were placed in jars containing room air, rather than the hypoxic gas mixture.

Behavioral Testing

Animals were examined daily for appearance of six motor milestones according to a standardized neurologic developmental battery for rats. The specific skills of head lifting, walking, righting, cliff avoid-
Cerebral and cerebellar blood flow autoregulations in acutely induced cerebral ischemia in spontaneously hypertensive rats--transient remote effect.
O Shiokawa, S Sadoshima, K Kusuda, Y Nishimura, S Ibayashi and M Fujishima

Stroke. 1986;17:1309-1313
doi: 10.1161/01.STR.17.6.1309

Stroke is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1986 American Heart Association, Inc. All rights reserved.
Print ISSN: 0039-2499. Online ISSN: 1524-4628

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://stroke.ahajournals.org/content/17/6/1309

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in *Stroke* can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to *Stroke* is online at:
http://stroke.ahajournals.org/subscriptions/