There were no gross sensory or visual field defect. She was alert with a right hemiplegia and aphasia. She was admitted 24 hours later, on June 30, 1985.

A 65 year-old right handed woman was found at home seated on a chair with a right-sided weakness and speech disorder. She was admitted 24 hours later, on June 30, 1985.

She was alert with a right hemiplegia and aphasia. There were no gross sensory or visual field defect. She had a left ptosis and complete extrinsic and intrinsic paralysis of the left eye. There was no proptosis or chemosis. No bruit was heard over the neck and eyeballs. Cardiac examination was without significant abnormalities. BP: 160/80.

Unenhanced CT scan 1 hour after admission showed a left prerolandic low density area and a high density area in the left cavernous sinus region. On the same day angiography showed occlusion of the left ICA approximately 3 cms after its origin (fig. 1). A second CT with contrast and slices 6 mms thick showed a rounded image highly suggestive of a thrombosed large (23 mms diameter) aneurysm of the left ICICA (fig. 2). There was in addition erosion of the anterior clinoid process and of the lateral wall of the ethmoidal sinus (fig. 1 and 2). On July 4, a right carotid angiography showed 2 small berry aneurysms, at the bifurcation of the anterior clinoid process and of the lateral wall of the ethmoidal sinus (fig. 2). There was in addition erosion of the anterior clinoid process and of the lateral wall of the ethmoidal sinus (fig. 1 and 2). On July 4, a right carotid angiography showed 2 small berry aneurysms, at the bifurcation of the anterior clinoid process and of the lateral wall of the ethmoidal sinus (fig. 2). There was in addition erosion of the anterior clinoid process and of the lateral wall of the ethmoidal sinus (fig. 1 and 2). On July 4, a right carotid angiography showed 2 small berry aneurysms, at the bifurcation of the anterior clinoid process and of the lateral wall of the ethmoidal sinus (fig. 2). There was in addition erosion of the anterior clinoid process and of the lateral wall of the ethmoidal sinus (fig. 1 and 2). On July 4, a right carotid angiography showed 2 small berry aneurysms, at the bifurcation of the anterior clinoid process and of the lateral wall of the ethmoidal sinus (fig. 2). There was in addition erosion of the anterior clinoid process and of the lateral wall of the ethmoidal sinus (fig. 1 and 2). On July 4, a right carotid angiography showed 2 small berry aneurysms, at the bifurcation of the anterior clinoid process and of the lateral wall of the ethmoidal sinus (fig. 2). There was in addition erosion of the anterior clinoid process and of the lateral wall of the ethmoidal sinus (fig. 1 and 2). On July 4, a right carotid angiography showed 2 small berry aneurysms, at the bifurcation of the anterior clinoid process and of the lateral wall of the ethmoidal sinus (fig. 2). There was in addition erosion of the anterior clinoid process and of the lateral wall of the ethmoidal sinus (fig. 1 and 2). On July 4, a right carotid angiography showed 2 small berry aneurysms, at the bifurcation of the anterior clinoid process and of the lateral wall of the ethmoidal sinus (fig. 2). There was in addition erosion of the anterior clinoid process and of the lateral wall of the ethmoidal sinus (fig. 1 and 2). On July 4, a right carotid angiography showed 2 small berry aneurysms, at the bifurcation of the anterior clinoid process and of the lateral wall of the ethmoidal sinus (fig. 2). There was in addition erosion of the anterior clinoid process and of the lateral wall of the ethmoidal sinus (fig. 1 and 2). On July 4, a right carotid angiography showed 2 small berry aneurysms, at the bifurcation of the anterior clinoid process and of the lateral wall of the ethmoidal sinus (fig. 2). There was in addition erosion of the anterior clinoid process and of the lateral wall of the ethmoidal sinus (fig. 1 and 2). On July 4, a right carotid angiography showed 2 small berry aneurysms, at the bifurcation of the anterior clinoid process and of the lateral wall of the ethmoidal sinus (fig. 2). There was in addition erosion of the anterior clinoid process and of the lateral wall of the ethmoidal sinus (fig. 1 and 2). On July 4, a right carotid angiography showed 2 small berry aneurysms, at the bifurcation of the anterior clinoid process and of the lateral wall of the ethmoidal sinus (fig. 2). There was in addition erosion of the anterior clinoid process and of the lateral wall of the ethmoidal sinus (fig. 1 and 2). On July 4, a right carotid angiography showed 2 small berry aneurysms, at the bifurcation of the anterior clinoid process and of the lateral wall of the ethmoidal sinus (fig. 2). There was in addition erosion of the anterior clinoid process and of the lateral wall of the ethmoidal sinus (fig. 1 and 2). On July 4, a right carotid angiography showed 2 small berry aneurysms, at the bifurcation of the anterior clinoid process and of the lateral wall of the ethmoidal sinus (fig. 2).
Discussion

The aneurysm in this patient had a diameter of 2.3 cm, thus falling short of the definition of giant aneurysms (diameter higher than 2.5 cm). To our knowledge, only 1 similar case of occlusion of the ICA has been reported (Whittle et al.). As in our patient, the proximal edge of the thrombus occluding the ICA was well beyond the ICA origin, suggesting retrograde thrombosis. Whittle et al. in the same year reported a series of 12 patients with thrombosis of giant intracranial aneurysms (2 mentioned as ‘carotid cavernous’). It is not clear whether their case 4 is the same as that mentioned above. Nevertheless, in the reported cases, thrombosis of giant ICA aneurysms resulted in ophthalmoplegia with proptosis and in one patient, facial dysesthesiae. In none of them was ipsilateral ophthalmoplegia with contralateral hemiplegia seen as in the patient reported here.

References

Ophthalmoplegia with contralateral hemiplegia. Occlusion of the internal carotid artery due to thrombosis of an intracavernous aneurysm.

J C Gautier, A Awada and A Majdalani

Stroke. 1986;17:1321-1322
doi: 10.1161/01.STR.17.6.1321

Stroke is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1986 American Heart Association, Inc. All rights reserved.
Print ISSN: 0039-2499. Online ISSN: 1524-4628

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://stroke.ahajournals.org/content/17/6/1321

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Stroke can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Stroke is online at:
http://stroke.ahajournals.org//subscriptions/