Angiographic Features in Chinese Patients With Occlusive Cerebrovascular Disease

To the Editor:
Caplan et al in their recent review article1 mentioned, based on personal communications, that angiography of Chinese patients with embolic cerebral infarction (NECI)3 may provide angiographic features of occlusive cerebrovascular disease in Chinese patients, which can be summarized as follows:

1. In patients with carotid TIAs, a normal or nearly normal angiogram of the symptomatic carotid system was obtained in 45%; the site of arterial lesion was mainly extracranial in about 40% and intracranial in 15%. An atheromatous lesion of the carotid bifurcation was found in about one-third of the patients. Of those with intracranial arterial lesions, slightly more than half were carotid siphon stenosis, and an MCA occlusion was found in only 2 patients (4%).

2. In patients with NECI, arterial lesion of the intracranial portion was 2.3 times more frequent than of the extracranial. The prevalence of occlusive lesion in the MCA and ICA were found to be almost equal, about 25%. Approximately half of ICA disease was carotid siphon stenosis or occlusion. Extracranial ICA disease was uncommon. It is concluded that extracranial ICA disease is uncommon in patients with NECI, but still contributes to the pathogenesis of carotid TIAs in more than one-third of cases. Both the carotid siphon and the MCA are important sites of intracranial occlusive disease.

Shan Jin Ryu, M.D.
Department of Neurology
Chang Gung Memorial Hospital
Taipei 10591, Taiwan

References

The following letter is in reply:
To the Editor:
We thank Dr. Ryu for bringing attention to his study from Taiwan. Clearly more data describing the distribution of arterial lesions in Chinese, Japanese, and black patients are needed. New England Medical Center, located near Boston's Chinatown, serves as a principal care facility for Americans of Chinese ancestry in Boston. We are now reviewing our angiographic results in this group of patients. We hoped by our review to stimulate others to examine and report their experiences.

Louis R. Caplan, M.D.
Department of Neurology
Tufts-New England Medical Center
Boston, Massachusetts
Daniel B. Hier, M.D.
Philip B. Gorelick, M.D.
Department of Neurology (Stroke Service)
Michael Reese Hospital and Medical Center
Chicago, Illinois

Bed Rest After Ischemic Stroke Is Not a Main Reason for the Decline in Arterial Blood Pressure

To the Editor:
I should like to comment on the interesting paper by Grotta et al., "Baseline hemodynamic state and response to hemodilution in patients with acute cerebral ischemia," published in Stroke.1 This is a pilot study of 9 consecutive patients at the acute stage of cerebral infarction (CI). We agree with the authors that despite the interest in hemodilution for acute stroke and its basis in cardiovascular physiology, there are no well known published data up to 1985 on the baseline systemic (or general) hemodynamic status of patients entering the hospital with acute CI. Such data are necessary for designing protocols that will optimize the desired effects on viscosity and cardiac pump function and that will be safe in patients who often have impaired cardiac function.1,2 However, we do not agree with the authors that the gradual decline in mean arterial blood pressure, which is often seen in patients after stroke, is due to bed rest. Grotta et al have measured main parameters of systemic hemodynamics during the first 3 days in 9 patients after CI. We have repeatedly measured main parameters of systemic hemodynamics during the first 2 weeks with 76 patients after CI. Some data are now available,3,4 and another part is in press (in Cor et Vasa). Some information we can give here.

A clinical series of 76 patients with CI was repeatedly investigated, using noninvasive techniques, i.e., integral rheography of the whole body. This method makes it possible to evaluate main parameters of general hemodynamics (left ventricular stroke volume, heart rate, cardiac output, and some others). It was shown that the heart rate, the cardiac output, and all components of the arterial pressure decrease considerably during the acute stage of the disease. These patients were divided into 2 groups: 1) patients with the ability to walk (including with assistance, n = 60) after 2 weeks, and 2) patients without the ability to walk (n = 16), who also have the lowest activities of daily living (ADL) score. The treatment in both groups was similar. There were no comatose patients in either group, no clinically diagnosed myocardial infarctions, and no deaths. The left ventricular stroke volume, heart rate, cardiac output, and diastolic blood flow did not differ significantly between the 2 groups. There was a significant difference between the systolic blood pressure values (mean ± SEM), 157 ± 5 and 178 ± 4 mm Hg (p < 0.05) on the first day after CI, but no difference on the 14th day (142 ± 4 and 144 ± 7 mm Hg, respectively, for Groups 1 and 2). The present data show that the patients with poor prognosis (Group 2) have a higher initial systolic blood pressure than the others; however, in both groups a significant (p < 0.05) decrease in blood pressure takes place. We conclude that bed rest or the inability to walk (low ADL score) 2 weeks after an ischemic stroke is not a main reason for the...
Angiographic features in Chinese patients with occlusive cerebrovascular disease.

S J Ryu

Stroke. 1987;18:686
doi: 10.1161/01.STR.18.3.686.a

Stroke is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1987 American Heart Association, Inc. All rights reserved.
Print ISSN: 0039-2499. Online ISSN: 1524-4628

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://stroke.ahajournals.org/content/18/3/686.1.citation

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Stroke can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Stroke is online at:
http://stroke.ahajournals.org/subscriptions/