Leukoencephalopathy in Patients With Ischemic Stroke

J. Bogousslavsky, MD, F. Regli, MD, and A. Uske, MD

Thirty-one (16 women, 15 men; mean age 68 years) of 1,000 consecutive patients with an ischemic stroke investigated systematically with computed tomography (CT), Doppler, electrocardiography (ECG), and biological tests had a diffuse hypodensity of the cerebral hemispheric white matter on CT, a sign indicative of leukoencephalopathy. In 25 of the 31 patients, the acute infarct was deep. Leukoencephalopathy was more frequent in patients with a deep infarct (8%) than in patients in whom the cortex was involved (0.8%) (p<0.01). A history of progressive intellectual impairment (23%) and the finding of a mild or moderate impairment, or severe dementia (84%) were more frequent in study patients (p<0.05) than in 31 sex- and age-matched controls with an acute infarct of same size and topography but without leukoencephalopathy. A history of hypertension (81%) and high blood pressure on admission (166 ± 19/96 ± 12 mm Hg) were the most common risk factors and were more frequent in study patients (p<0.05) than in controls. On the other hand, study patients had a 50% stenosis or occlusion of the carotid artery (13%) less often than controls (35%) (p<0.05). Diabetes (23%), elevated blood cholesterol (13%), hematocrit >45% (23%), smoking (32%), and myocardial ischemia by history or ECG (45%) did not differ. These findings suggest that hypertension may be more strongly associated with leukoencephalopathy than with deep infarcts. In acute stroke patients, leukoencephalopathy on CT should not be considered a fortuitous finding.

(Stroke 1987; 18:896–899)

Binswanger 1 in 1894 reported 8 cases of what he termed “encephalitis subcorticalis progressiva,” in which white matter changes were prominent and attributed to vascular changes. The clinical picture associated a slow mental deterioration with “apoplectic attacks.” The concept of Binswanger’s disease has since been used to describe a leukoencephalopathy (LE) of the elderly with chronic hypertension, which has been related to progressive arteriosclerosis involving the deep medullary branches in the white matter of the cerebral hemispheres. 2–4 Recently, patients with a suggestive clinical picture who showed hypodense hemispheric white matter on computed tomography (CT) have been diagnosed to have Binswanger’s disease, sometimes with pathologic verification. 5–11 However, the neuropathologic findings (gliosis, demyelination, and chronic edematous changes often intermingled with small infarcts and cysts) are not specific. 2,12–14 For this reason, Binswanger’s disease as a clinicopathologic entity has been questioned. 15,16 and it has been suggested that the condition does not differ from multi-infarct dementia with multiple lacunes. 4,15 Moreover, a diffuse hypodensity of the white matter on CT has been reported in normotensive, apparently healthy people 17–19 as well as in patients with proven Alzheimer’s disease in the absence of significant cerebrovascular changes. 18,20 However, although the finding of diffuse lucency of the cerebral white matter on CT may be fortuitous in some patients and reflect only an aging process, 18 the same finding in a subpopulation of patients with specific cerebrovascular problems may bear a clinical significance. We have evaluated the significance of diffuse lucency of the white matter on CT in patients admitted to our department for an acute ischemic stroke.

Subjects and Methods

All patients with diffuse hypodensity in the hemispheric white matter among the last 1,000 patients admitted following ischemic stroke were selected from our stroke data registry. All patients with stroke were investigated using a standard protocol including CT, Doppler ultrasound with frequency spectral analysis, electrocardiography (ECG), fasting blood cholesterol, and other screening blood analyses. The following parameters could be assessed in the patients with LE: vascular risk factors such as hypertension, diabetes mellitus, cigarette use, ischemic heart disease, cardiac dysrhythmia; previous stroke, transient ischemic attack (TIA), myocardial infarction; blood pressure on admission; clinical findings; ischemic heart disease and dysrhythmia on ECG; tomography of cerebral infarcts on CT, and patency of the carotid arteries on Doppler ultrasound.

A diagnosis of LE was made when two investigators independently found that the white matter of the cerebral hemispheres, including not only the periventricular white matter but also the core of the centrum semiovale, was hypodense on CT. Patients with multiple sclerosis, history of acute anoxia, radiation LE, leukodystrophy, and other known nonvascular causes of LE
were excluded. For Doppler ultrasound, 5 categories of findings on the internal carotid artery were used: 0–49% stenosis of the lumen diameter, 50–74% stenosis, 75–89% stenosis, 90–99% stenosis, and occlusion.

Mental status (orientation, memory, language, constructional ability, abstraction, and calculation) was assessed systematically in all patients with an acute stroke admitted to our service using a standard battery of tests.21 Four categories of neuropsychological impairment were used, based on cognitive deficit and interference with independent living: no impairment, mild impairment (cognitive deficit but no interference with activities of daily living), moderate impairment (some disability due to cognitive impairment), and severe dementia (unable to perform activities of daily living).

To assess the role of risk factors in the genesis of LE, a retrospective case–control study was performed. The control group consisted of sex- and age-± 2 years) matched patients with ischemic stroke, who were thereafter matched for topography and size of the acute cerebral infarct on CT. This matching eliminated the bias due to the selective impact of some risk factors on the location of cerebral infarction; for instance, patients with small deep infarcts are more often expected to be hypertensive than patients with cortical infarcts. Thus, the controls were the same age and sex, with an acute cerebral infarct similar to that of the study patients, but without LE on CT. Statistical analysis was completed using the χ² test, Fisher’s test, and analysis of variance.

Results

Sixteen women and 15 men (mean age 68 years, not different between sexes) displayed LE, a diffuse hypodensity in the hemispheric white matter in all patients, but which predominated anteriorly (15 patients) more often than posteriorly (2 patients).

Clinical Characteristics

The presenting stroke was in the deep middle cerebral artery (MCA) territory in 21, the superficial MCA territory in 4, the brainstem in 2, the thalamus in 2, the superficial posterior cerebral artery (PCA) territory in 1, and the complete PCA territory in 1 patient. Twelve study patients had suffered previous cerebrovascular events consisting of carotid stroke in 6, vertebrobasilar stroke in 2, and isolated TIAs in 4. Seven study patients complained of progressive memory and intellectual impairment that developed over 1–2 years. One of these 7 study patients, plus another study patient without mental deterioration, also had gait disturbances that progressed over the year before admission. On admission, 13 study patients had the following clinical features of a lacunar syndrome: pure motor hemiparesis (6), ataxic hemiparesis (3), pure sensory stroke (3), and nonproportional pure motor hemiparesis (1). Four study patients had features compatible with a "lacunar state:" involuntary laughing and crying in 2, marche à petits pas in 2, and bilateral facial or lingualpharyngeal weakness in 2. One study patient had urinary incontinence. No study patient had parkinsonian features, but 2 had dystonic posturing of the upper limbs as a consequence of the presenting stroke. Neuropsychological testing showed normal results for age in only 5 study patients; 9 were mildly impaired, 14 moderately impaired, and 3 severely demented. These findings differed strikingly from those among the controls, who showed normal results in 17, mild impairment in 8, moderate impairment in 4, and severe dementia in 2 (p < 0.01). Also, none of the controls had a history of recent progressive mental impairment (p < 0.05).

On CT, 11 study patients had > 1 infarct (8 patients had 2, 2 patients had 3, and 1 patient had 4). Eighty percent of the infarcts were deep while 20% involved the cerebral cortex. In the total group of 1,000 patients with ischemic stroke, LE was more frequent in the 230 patients in whom the stroke was due to a deep infarct (8%) than in the 770 patients in whom the stroke was due to a superficial or global infarct (0.8%) (p < 0.0001).

Risk Factors

The risk factors are summarized in Table 1. Hypertension was the main risk factor (81%) and the only risk factor that was more frequent in the study patients than in the controls (p < 0.05). On history, elevated blood pressure had been present for 12 ± 7 years in the 25 study patients with hypertension; this did not differ from the 13 controls with hypertension (11 ± 6 years). Blood pressure on admission was 166 ± 19/96 ± 12 mm Hg in the study patients vs. 156 ± 14/85 ± 8 mm Hg in the controls (p < 0.05). In patients with known hypertension, there was a moderate difference in the blood pressure on admission between the study patients (170 ± 17/99 ± 10 mm Hg) and the controls (166 ± 19/95 ± 14 mm Hg), but this was not significant. The duration of diabetes mellitus did not differ between the study patients (13 ± 5 years) and the controls (12 ± 7 years).

Table 1. Risk Factors for Patients With Leukoencephalopathy and Controls

<table>
<thead>
<tr>
<th>Risk Factor</th>
<th>Study patients</th>
<th>Controls</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypertension*</td>
<td>25 (81%)</td>
<td>13 (42%)</td>
<td><0.05</td>
</tr>
<tr>
<td>Diabetes mellitus*</td>
<td>7 (23%)</td>
<td>6 (19%)</td>
<td>NS</td>
</tr>
<tr>
<td>Cigarette smoking*</td>
<td>10 (32%)</td>
<td>13 (42%)</td>
<td>NS</td>
</tr>
<tr>
<td>Hypercholesterolemia†</td>
<td>4 (13%)</td>
<td>3 (10%)</td>
<td>NS</td>
</tr>
<tr>
<td>Hematocrit > 45%</td>
<td>7 (23%)</td>
<td>10 (32%)</td>
<td>NS</td>
</tr>
<tr>
<td>Ischemic heart disease</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Old myocardial infarct‡</td>
<td>2 (6%)</td>
<td>2 (6%)</td>
<td>NS</td>
</tr>
<tr>
<td>Isolated angina</td>
<td>6 (19%)</td>
<td>5 (16%)</td>
<td>NS</td>
</tr>
<tr>
<td>ST–T changes on ECG</td>
<td>9 (29%)</td>
<td>12 (39%)</td>
<td>NS</td>
</tr>
<tr>
<td>Atrial fibrillation§</td>
<td>3 (10%)</td>
<td>4 (13%)</td>
<td>NS</td>
</tr>
</tbody>
</table>

*By history.
†> 6.5 mmol/l (fasting).
‡Older than 8 months in all patients.
§By history or on electrocardiogram.
leukoencephalopathy may correspond to a phenomenon of chronic distal ischemia with a distorted blood–brain barrier due to progressive arteriosclerosis in the end arterioles of the white matter medullary branches. However, the occurrence of incomplete infarction with demyelination in the setting of chronic cerebral hypoperfusion remains a very controversial issue because it has not been clearly substantiated that a chronically lowered cerebral blood flow could itself lead to morphologic damage.

Dementia has been considered to be the cardinal clinical feature of so-called Binswanger’s disease, although non-demented patients may have similar CT findings. Our results show that LE in patients with ischemic stroke is significantly associated with intellectual deterioration.

In elderly hypertensive patients admitted with a stroke, an underlying LE may be suspected on clinical grounds before CT. In these patients, further investigations are unlikely to disclose an etiologically significant cardiac or carotid lesion. The strong association between LE and hypertension warrants vigorous management of high blood pressure in these patients, which may possibly alter the progression of LE with stabilization of the neuropsychological dysfunction.

References

9. Zeumer H, Hacke W, Kolmann HL, Ringlestein EB: Subcorti-

cal arteriosclerotic encephalopathy (Binswanger's disease). Exp

Brain Res 1982;5(supp):272-276

10. Dupuis M, Brucher JM, Gonsette RE: Observation anatomico-

clinique d'une encéphalite sous-corticale artérioscléreuse

("maladie de Binswanger") avec hypodensité de la substance

blanche au scanner cérébral. Acta Neurol Belg 1984;84:131-

140

11. Kinkel WR, Jacobs L, Polachini I, Bates V, Heffner RR Jr:

Subcortical arteriosclerotic encephalopathy (Binswanger's dis-

gease). CT, NMR, and clinical correlations. Arch Neurol

1985;42:951-959

12. Feigin I, Popoff N: Neuropathological changes late in cerebral

edema: The relationship to trauma, hypertensive disease and

Binswanger encephalopathy. J Neuropathol Exp Neurol

1963;22:500-511

subcortical encephalopathy or multi-infarct dementia. Can J

14. Dubas F, Gray F, Roulet E, Escourolle R: Leucoencephalopa-

thies (17 cas anatomo-cliniques). Rev Neurol 1985;141:93-

108

15. De Reuck J, Crevis L, De Coster W, Sieben G, Van der

Eecken H: Pathogenesis of Binswanger chronic progressive

16. Valentine AR, Moseley IF, Kendall BE: White matter abnor-

mality in cerebral atrophy: Clinico-radiological correlations. J

Neural Neurosurg Psychiatry 1980;43:139-142

17. Pullicino P, Eskin T, Ketonen L: Prevalence of Binswanger's

18. George AE, de Leon MJ, Gentes CI, Miller J, London E,

Badzilowich GN, Ferris S, Chase N: Leukoencephalopathy in

normal and pathologic aging: 1. CT of brain lucencies. AJNR

1987;44:42-47

19. Brott T, Mouradin M, Uthman B: Dementia, ventricular en-

largement, and hypertension associated with periventricular

hypertension by CT. Ann Neurol 1986;20:129-130

20. George AE, de Leon MJ, Kalnin A, Rosner L, Goodgold A,

Chase N: Leukoencephalopathy in normal and pathologic

aging: 2. MRI of brain lucencies. AJNR 1987;44:42-47

Neurology 1986;36:998-1001

22. Jellinger K, Neumayer E: Progressive subcortical vascular

Encephalopathie Binswanger: eine klinische neuropatholog-

ische Studie. Arch Psychiat Nervkranck Z Ges Neurol

1964;205:523-554

23. Burger PC, Burch HG, Kunze U: Subcortical arteriosclerotic

encephalopathy (Binswanger's disease). A vascular etiology

of dementia. Stroke 1976;7:626-631

douresques J: Encéphalopathie subcorticale de Binswanger.

Etude d'un cas comportant une atteinte hémisphérique gauche

nettement prédominante. Rev Neurol 1979;135:665-678

25. Janota I: Dementia, deep white matter damage and hyperten-

26. Tomonaga M, Yamanouchi H, Tohgi H, Kameyama M: Clinic-
pathologic study of progressive subcortical vascular enceph-

alopathy (Binswanger type) in the elderly. J Am Geriatr Soc

1982;30:524-529

27. Inzitari D, Diaz JF, Fox AJ, Hachinski VC, Steinberg LA,

Yates C, Donald A, Wad JPH, Mulic H, Merskey H: Vascular

28. Dubas F, Gray F, Roullet E, Escourrolle R: Leucoencephalopa-

thies (17 cas anatomo-cliniques). Rev Neurol 1985;141:93-

108

29. Jellinger K, Neumayer E: Progressive subcortical vascular

Encephalopathie Binswanger: eine klinische neuropatholog-

ische Studie. Arch Psychiat Nervkranck Z Ges Neurol

1964;205:523-554

30. De Reuck J, Schaumburg HH: Periventricular atherosclerotic

31. De Reuck J, Schaumburg HH: Periventricular atherosclerotic

32. De Reuck J, Van der Eecken H: Periventricular leukomalacia

33. Hurwitz BJ, Heyman A, Dryer B, Utley C: Cerebral white

matter hypodensity in CT scans: An indication of Binswanger's

KEY WORDS • stroke • leukoencephalopathy • dementia

• cerebral infarct • hypertension
Leukoencephalopathy in patients with ischemic stroke.
J Bogousslavsky, F Regli and A Uske

Stroke. 1987;18:896-899
doi: 10.1161/01.STR.18.5.896

Stroke is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1987 American Heart Association, Inc. All rights reserved.
Print ISSN: 0039-2499. Online ISSN: 1524-4628

The online version of this article, along with updated information and services, is located on the
World Wide Web at:
http://stroke.ahajournals.org/content/18/5/896

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in
Stroke can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office.
Once the online version of the published article for which permission is being requested is located, click Request
Permissions in the middle column of the Web page under Services. Further information about this process is
available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Stroke is online at:
http://stroke.ahajournals.org//subscriptions/