Endothelium-Dependent Relaxation of Canine Basilar Arteries

Part 1: Difference Between Acetylcholine- and A23187-Induced Relaxation and Involvement of Lipoxygenase Metabolite(s)

Kenji Kanamaru, MD, DMSc, Shiro Waga, MD, DMSc, Tadashi Kojima, MD, DMSc, Kiyoshige Fujimoto, MD, and Hiroji Itoh, MD

Vascular responses to acetylcholine (ACh) and the calcium ionophore A23187 were studied in rings of canine basilar arteries. In preparations that were precontracted to a stable plateau by 3×10^{-6} M prostaglandin F$_2\alpha$ (PGF$_2\alpha$), 10^{-7} to 10^{-5} M A23187 elicited significant relaxation of the basilar arteries if the endothelium was intact. Judging from histologic findings, the ability of a ring to relax in this manner is due to the presence of the endothelium. The same concentration of A23187 did not relax vascular tissues in which the endothelium was purposely disrupted. Although 10^{-7} to 10^{-5} M ACh did not sufficiently produce endothelium-dependent relaxation of canine basilar artery rings, ACh in the same concentration did produce significant relaxation in canine femoral rings. Our results suggest that the sensitivity of the muscarinic receptor of cerebral arteries appears to be appreciably different from that of peripheral (femoral) arteries. Pretreatment with 1.5×10^{-5} M indomethacin, a cyclooxygenase inhibitor, potentiated the contractile responses produced by PGF$_2\alpha$ in intact rings. Preincubation with the lipoxygenase inhibitors nordihydroguaiaretic acid (NDGA) at 1.5×10^{-5} M or AA861 at 10^{-5} M prevented A23187-induced relaxation. The same concentration of NDGA and AA861 did not affect endothelium-independent relaxation induced by glyceryl trinitrate. We suggest that endothelium-dependent relaxation of the canine basilar artery by A23187 may be mediated by noncyclooxygenase metabolite(s).

From the Department of Neurosurgery, Mie University School of Medicine and Hospital, Tsu, Japan.

Address for correspondence: Kenji Kanamaru, MD, Department of Neurosurgery, Mie University School of Medicine and Hospital, Tsu, Mie 514, Japan.

Received September 4, 1986; accepted May 5, 1987.
of the intimal surface with a 25–30-gauge stainless steel rod having a diameter equivalent to the lumen of the arteries as described by Lee. Control rings were not rubbed and are termed intact.

Scanning Electron Microscopy

Segments of the freshly dissected arteries and those from the in vitro tissue bath were fixed in 2.5% glutaraldehyde in 0.07 M phosphate buffer (pH 7.4), dehydrated in graded alcohols and acetone, and dried by the critical-point method. Specimens were mounted on metal stubs, coated with gold, and viewed in a JSM-T200 scanning electron microscope (Tokyo, Japan).

Arterial Relaxation Response to ACh and A23187

The basic experimental protocol employed a control period during which the intact arterial rings were contracted with an approximate ED50 concentration of prostaglandin F2α (PGF2α) and relaxed by the cumulative addition of ACh and A23187. At the end of each series of experiments, 10^-4 M papaverine was added to attain maximum relaxation according to the report by Toda et al. Values relative to the papaverine-induced relaxation are presented in the text, table, and figures. Preparations had been treated for 20 minutes with blocking agents before the response to ACh or A23187 was obtained.

Statistical Analysis

The ED50 was obtained from a plot of percent response vs. log concentration of the agonist and expressed as the negative logarithm (pD2). The results are expressed as mean ± SD, and compared using Student’s t test. A probability of ≤0.05 was considered significant.

Results

Scanning Electron Microscopy

The presence or absence (disruption) of the endothelium in arterial rings was ascertained with scanning electron microscopy. In Figure 1 Left, oval elevations are portions of the endothelial cells overlying nuclei in the endothelium of a control artery. Rubbing the endothelium with a stainless steel rod completely removed the endothelial cells (Figure 1 Right). Residual debris of the rubbed endothelial cells is also seen in Figure 1 Right.

Relaxation Response to A23187 and ACh

Rings of intact basilar arteries were contracted with PGF2α, and the addition of 10^-9 to 10^-7 M A23187 caused a dose-dependent relaxation (Figure 2a). However, even at high concentrations ACh did not produce significant relaxation in the intact canine basilar arteries (Figure 2b). A23187-induced relaxations relative to those induced by 10^-4 M papaverine in the intact basilar artery rings are summarized in Table 1 (control values). Both ACh and A23187 induced noticeable relaxation in the intact femoral artery rings (Figure 2, c and d). Dose–response curves for A23187 and ACh in the intact basilar and femoral artery rings are shown in Figure 3. A23187 produced significantly greater relaxation in the femoral than in the basilar artery rings (Figure 3a). It was remarkable that the same was true for ACh (Figure 3b). Therefore, consecutive experiments were performed using A23187. Figure 4 shows the cumulative dose–response relation, in both the presence and absence of endothelium, to A23187-stimulated relaxation of the basilar artery rings that had been precontracted with PGF2α. This figure clearly demonstrates that relaxation of the canine basilar artery by the calcium ionophore A23187 is completely endothelial-cell-dependent. A23187 elicited maximal relaxation, 69.30 ± 9.31% of the plateau tension induced by PGF2α (Table 1). As shown in Table 1, pD2 for A23187-stimulated relaxation is 7.57 ± 0.32 (control).

Mechanism of Endothelium-Dependent Relaxation of Canine Basilar Artery

To rule out the possibility that this relaxation might be caused by A23187-induced production of prostacyclin in the endothelial cells, a cyclooxygenase inhibitor, indomethacin, was used. The effect of 1.5 × 10^-5 M indomethacin added to the incubating bath for 20 minutes before and during the contraction-relaxation
A series of experiments using NDGA, a reported lipoxygenase inhibitor,9,10 were conducted after NDGA was found to significantly inhibit A23187-induced relaxation of precontracted rabbit aorta rings in a dose-dependent manner.4,11 Pretreatment with 1.5 × 10⁻³ M NDGA significantly reduced the maximal relaxation to A23187 (Table 1). As shown in Figure 5b, pretreatment with NDGA prevented the relaxation in response to most concentrations of A23187 tested but did not alter the contractile responses to 3 × 10⁻⁶ M PGF₂α (Table 1). AA861 has been reported to inhibit 5-lipoxygenase activity specifically.12 Pretreatment with 10⁻³ M AA861 significantly reduced the maximal relaxation to A23187 (Figure 5c) without affecting the contractile response to 3 × 10⁻⁶ M PGF₂α (Table 1).

To determine the selectivity of the inhibitory effects of NDGA and AA861, we examined the effects of these agents against the relaxation induced by another agent, glyceryl trinitrate (GTN), which occurs independent of any action on the endothelial cells.13 Control rings contracted to a plateau tension by PGF₂α were relaxed 76.07 ± 8.58% by GTN. The pD₂ for this agonist was 5.44 ± 0.30. Pretreatment with 1.5 × 10⁻³ M NDGA or 10⁻³ M AA861 had no effect on relaxation induced by 10⁻⁷ to 10⁻⁴ M GTN (Figure 6).

Table 1. Effects of Indomethacin, NDGA, and AA861 on PGF₂α-Induced Contraction and A23187-Induced Relaxation in Canine Basilar Artery Rings

<table>
<thead>
<tr>
<th>Pretreatment</th>
<th>n</th>
<th>Developed tension (mg)</th>
<th>A23187-induced relaxation</th>
<th>Maximum (%)</th>
<th>pD₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saline (control)</td>
<td>9</td>
<td>353.2 ± 48.4</td>
<td>69.30 ± 9.31</td>
<td>7.57 ± 0.32</td>
<td></td>
</tr>
<tr>
<td>1.5 × 10⁻⁵ M Indomethacin</td>
<td>5</td>
<td>420.5 ± 35.3*</td>
<td>67.80 ± 6.13</td>
<td>7.41 ± 0.13</td>
<td></td>
</tr>
<tr>
<td>1.5 × 10⁻⁵ M NDGA</td>
<td>9</td>
<td>365.8 ± 34.2</td>
<td>20.98 ± 4.07*</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>10⁻⁵ M AA861</td>
<td>10</td>
<td>393.2 ± 118.5</td>
<td>32.81 ± 11.37*</td>
<td>—</td>
<td></td>
</tr>
</tbody>
</table>

NDGA, nordihydroguaiaretic acid; PGF₂α, prostaglandin F₂α. PGF₂α at 3 × 10⁻⁶ M. pD₂, negative logarithm.

*Different from control (p < 0.01).
Discussion

The experiments reported here support the hypothesis, originally put forth by Furchgott and Zawadzki,1 that endothelium-dependent relaxation evoked by A23187 is mediated by a noncyclooxygenase metabolite of arachidonic acid. Whereas prostacyclin can be produced in canine basilar arteries,14,15 based on negative results with indomethacin (Figure 5a), it is unlikely that prostacyclin is the active dilator substance produced in response to A23187. Indomethacin reportedly potentiates the arachidonic-acid-induced relaxation in intact rabbit aorta rings.16 Unlike relaxation stimulated by arachidonic acid,11 that stimulated by A23187 was not significantly potentiated by indomethacin pretreatment (Figure 5a).

The present study demonstrates that indomethacin pretreatment potentiates the contractile responses in intact canine basilar artery rings (Table 1). Although the exact explanation for this event cannot be given here, it seems that prostacyclin, a potent vasodilator produced by the activation of cyclooxygenase, is not produced by the administration of indomethacin.17 Considering the lack of effect of indomethacin on A23187-induced relaxation, the inhibition of endothelium-dependent relaxation by either NDGA or AA861 suggests that a noncyclooxygenase product or arachidonic acid metabolism may mediate or participate in the sequence of events resulting in relaxation. NDGA has been reported to inhibit lipoxygenase activity in other systems at concentrations similar to those we used.9,10 AA861 at 10^-3 M selectively inhibits 5-lipoxygenase of guinea pig peritoneal polymorphonuclear leukocytes.12 This concentration is similar to that which we used. NDGA and AA861 did not affect the relaxation induced by GTN, suggesting that their inhibitory effects are specific for the endothelium-dependent vasodilator. However, the possibility that NDGA and AA861 inactivate the properties of A23187 by acting on it directly cannot be ruled out.

Most lipoxygenase metabolites of arachidonic acid described in the literature appear to be contractile agonists in vascular smooth muscle,18,19 and a recent study suggests that leukotrienes, lipoxygenase products, produce a constriction of the cerebral arterioles of mice.20 In canine basilar arteries, 15-hydroperoxyarachidonic acid produces significant constriction in either in vivo21 or in vitro22 studies. However, there have been several reports on lipoxygenase products with vasodilator activity. Bunting et al23 and, most recently, De Mey et al24 have reported that 15-hydroperoxyarachidonic acid relaxes vessels that have preexisting tone. Infusion of several hydroperoxy and hydroxy derivatives of arachidonic acid into isolated perfused stomach vasculature of rabbits and rats have also been reported to cause a marked decrease in perfusion pressure.25 Although the full spectrum of lipoxygenase me-
tabolites and their biologic activities has not been discovered, lipoxygenase is probably involved in the synthesis of EDRF as 7 chemically different lipoxygenase inhibitors were effective on the EDRF of rabbit aortas,26 and the 2 lipoxygenase inhibitors we tested also prevented the EDRF of canine basilar arteries.

A potent inducer of EDRF in canine basilar arteries, A23187 is a well-documented ionophore specific for divalent cations, especially calcium.27 In addition, the most effective stimulus for the formation of 5-lipoxygenase products has been found to be this same divalent cation ionophore.28 Although no precise role of 5-lipoxygenase in living vascular tissue has yet been elucidated, it may have been involved in the A23187-induced relaxation.

PGF2α is suspected as a causative factor in experimental vasospasm.29-31 In our experiment, EDRF strongly eliminated the contractile tensions induced by PGF2α, but whether an inhibition of EDRF takes place in cerebral vasospasm after aneurysmal rupture warrants further investigation. There have been numerous clinical and experimental studies of the morphologic changes in the endothelium of cerebral arteries after subarachnoid hemorrhage (SAH).32-38 For example, subarachnoid clot produces constriction of the major cerebral arteries with corrugation of the elastic lamina and opening of the tight junction.36 The corrugated lamina may squeeze the endothelial cells and inhibit their metabolism.36-39 Further, electron microscopic studies in dogs with SAH demonstrated degenerative changes of endothelial cells in the major arteries,36 and the synthetic activity of prostacyclin in canine basilar arteries exposed to subarachnoid blood injection remarkably diminished.14-16 Therefore, it is of interest to demonstrate whether endothelium-dependent relaxation is blocked by SAH. Such a study was conducted and is the subject of our next report.

References

FIGURE 5. a: Dose—response curves showing effects of 1.5 X 10⁻⁵ M indomethacin (○) on endothelium-dependent relaxation of intact canine basilar artery rings induced by A23187. ●, control; difference not significant. b: Dose—response curves showing effects of 1.5 X 10⁻⁵ M nordihydroguaiaretic acid (NDGA) (○) on endothelium-dependent relaxation of intact canine basilar artery rings induced by A23187. ●, control; *p < 0.05. c: Dose—response curves showing effects of 10⁻⁵ M AA861 (○) on endothelium-dependent relaxation of intact canine basilar artery rings induced by A23187. ●, control; *p < 0.05, tp < 0.07.

FIGURE 6. Dose—response curves showing effects of 1.5 X 10⁻⁵ M NDGA (○) and 10⁻⁵ M AA861 (●) on relaxation of intact canine basilar artery rings induced by glyceryl trinitrate (GTN). ●, control.
Kanamaru et al EDRF of Canine Basilar Artery

5. Toda N: The action of vasodilating drugs on isolated basilar, coronary and mesenteric arteries of the dog. J Pharmacol Exp Ther 1974;191:139–146

17. Cherry PD, Furchgott RF, Zawadzki JV, Jothianandan D: Role of endothelial cells in relaxation of isolated arteries by bradykinin. Proc Natl Acad Sci USA 1982;79:2106–2110

25. Förstermann U, Neufang B: The endothelium-dependent vasodilator effect of acetylcholine: A characterization of the endothelial relaxing factor with inhibitors of arachidonic acid metabolism. Eur J Pharmacol 1984;103:85–70

34. Liszczak TM, Varsos VG, Black PM, Kistler JP, Zervas NT: Cerebral arterial constriction after experimental subarachnoid hemorrhage is associated with blood components within the arterial wall. J Neurosurg 1983;58:18–26

Key Words: • endothelium-derived relaxing factor • canine basilar artery • indomethacin • nordihydroguaiaretic acid • AA861
Endothelium-dependent relaxation of canine basilar arteries. Part 1: Difference between acetylcholine- and A23187-induced relaxation and involvement of lipoxygenase metabolite(s).
K Kanamaru, S Waga, T Kojima, K Fujimoto and H Itoh

Stroke. 1987;18:932-937
doi: 10.1161/01.STR.18.5.932

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://stroke.ahajournals.org/content/18/5/932

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Stroke can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Stroke is online at:
http://stroke.ahajournals.org/subscriptions/