Pure motor hemiplegia Secondary to a Saccular Basilar Artery Aneurysm

Marc Fisher, MD, Thomas W. Smith, MD, and Richard Jacobs, MD

Pure motor hemiplegia is the most commonly encountered lacunar syndrome and is classically associated with small infarctions in the contralateral internal capsule or basis pontis. Pure motor hemiplegia has also been observed secondary to a wide variety of other vascular and nonvascular focal central nervous system processes. We describe a patient with pure motor hemiplegia associated with a saccular basilar artery aneurysm causing a lacunar infarction of the cerebral peduncle. (Stroke 1988;19:104-107)

Pure motor hemiparesis (PMH) refers to a pure motor stroke that produces weakness of the contralateral face, arm, and leg without associated sensory deficits, homonymous hemianopsia, aphasia, or agnosia. The syndrome was initially reported by Fisher and Curry who observed, pathologically, lacunar infarcts in the contralateral internal capsule or basis pontis. Subsequently, PMH has been described in association with infarction of the cerebral cortex, centrum semiovale, medullary pyramid, and the cerebral peduncle. Small intracerebral hemorrhages involving the internal capsule, putamen, and basis pontis have also been observed in occasional patients with the clinical syndrome of PMH. A saccular basilar artery associated with lacunar infarction of the cerebral peduncle has not previously been described with PMH. We have recently seen a PMH patient with a lacunar infarction of the left cerebral peduncle and a large basilar artery aneurysm who had no other potential explanation for the syndrome.

Case Report

An 81-year-old woman was hospitalized with increasing dyspnea of 2 weeks duration. The patient had a medical history of coronary artery disease and cardiomyopathy with biventricular failure. There was no history of diabetes mellitus, hypertension, hyperlipidemia, or stroke. General physical examination on admission demonstrated an irregularly irregular pulse and marked jugular venous distention. A grade 2/6 systolic ejection murmur was heard at the cardiac apex. Examination of the lungs demonstrated percussion dullness and decreased breath sounds to the mid-lung fields bilaterally. Substantial pitting edema was present at both ankles. The neurologic examination demonstrated the cranial nerves to be normal aside from a mild right central facial weakness with associated flattening of the nasolabial fold. There was no evidence of cerebellar ataxia or aphasia. Two days after the onset of symptoms a computed tomogram (CT scan) was performed on a GE 9800 (Milwaukee, Wisconsin) scanner with a 512 x 512 matrix. The CT scan demonstrated a rounded area of increased density in the region of the interpeduncular fossa, compressing the left cerebral peduncle, and extending from the upper pons to the inferior aspect of the third ventricle (Figure 1). With contrast enhancement, this area of abnormality showed a further increase in density. There were no other abnormalities of a focal nature in the brainstem, internal capsule, basal ganglia, or cerebral hemispheres. A repeat CT scan was obtained 6 weeks after the ictus and again demonstrated the enhancing rounded mesencephalic lesion and no other area of focal abnormality.

At autopsy, the brain weighed 1,280 g and was unremarkable externally. At the base of the brain, a saccular (berry) aneurysm 0.8 cm in diameter originated from the rostral basilar artery at its bifurcation into the posterior cerebral arteries, occupying virtually the entire interpeduncular fossa (Figure 2). The wall of the aneurysm contained focal atheromata but was other-
Fisher et al. Pure Motor Hemiplegia Secondary to Aneurysm

Figure 1. Left: 1.6 cm high-density vascular lesion in region of left cerebral peduncle. Right: Lesion shows marked enhancement and is contiguous with circle of Willis. Bottom: Sagittal reconstruction demonstrating basilar artery aneurysm extending from upper pons to inferior aspect of third ventricle.

wise intact, without evidence of prior hemorrhage. The lumen of the aneurysm contained a dark red (postmortem) thrombus. The remainder of the circle of Willis was normal except for mild focal atherosclerosis. Coronal sections of the cerebrum were unremarkable. Horizontal sections of the brainstem revealed, at the level of the midbrain, a partly cavitary 0.2 × 0.4 cm lacunar infarct within the middle third of the left cerebral peduncle (Figure 3). Histologically, this infarct contained numerous lipid-laden macrophages and was surrounded by reactive astrocytes and scattered axonal swellings. A few hemosiderin-infarcts were present in the right paramedian basis pontis. Microscopic sections of the pons and medulla showed wallerian degen-
FIGURE 2. Transverse section of midbrain showing large sac-
cular aneurysm within interpeduncular fossa.

eration of the descending corticospinal fibers within
the left basis pontis and pyramid. No abnormalities
were present in the cerebellum.

Discussion

The syndrome of PMH is the most common lacunar
syndrome and may account for up to 60% of all lacunar
strokes. Capsular or pontine infarcts are the most
common pathologic findings associated with PMH,
and these anatomic loci produce an almost identical
clinical picture. Lacunar infarcts of the cerebral pe-
duncle producing PMH have been reported only rare-
ly. Nonlacunar PMH has also been described with a
large variety of other lesions including nocarial ab-
scess of the motor cortex, cortical cerebral infarction,
subdural hematoma, and demyelinating disease. Small
primary intracerebral hemorrhages in the capsule,
putamen, and basis pontis have also been associ-
ated with PMH. Although the most commonly en-
countered lacunar syndromes with small primary
intracerebral hemorrhages are ataxic hemiparesis and
sensorimotor stroke, the present patient appears to be
the first PMH case occurring secondary to a saccular
basilar artery aneurysm. The patient had a clinical syn-
drome compatible with acute PMH and pathologic evi-
dence of a lacunar infarction in the appropriate cerebral
peduncle. No other focal pathologic abnormalities
were observed that could have explained the clinical
symptoms.

There are several potential pathogenetic mecha-
nisms for the lacunar infarction in this case. The lacu-
nar infarction observed in the left cerebral peduncle
was close to the large saccular basilar artery aneurysm,
which appeared to compress that cerebral peduncle.
Focal neurologic events have been described as a com-
plication of the compressive effects of large intracran-
ial aneurysms. The abrupt development of symptoms
may have occurred because the enlarging aneurysm
acutely obstructed a penetrating branch of the basilar
artery within the confines of the aneurysm. Aneurysm-
to-artery embolization has been described as an un-
common etiology for completed stroke and transient
ischemic attacks, which is another possible cause for
our patient’s lacunar infarction. This mechanism of
aneurysm-induced cerebral ischemia has been proven
by angiographic documentation of aneurysmal throm-
bus and distal arterial emboli in the appropriate vascu-
lar territory in a few cases. It is uncertain which
mechanism was most likely causative in our case. This
patient demonstrates that PMH can occur secondary to
a basilar artery saccular aneurysm and provides an-

FIGURE 3. Histologic section of midbrain showing lacunar
infarction in middle third of left cerebral peduncle (Woelcke, ×
11).
other example of the many potential etiologies for this common stroke syndrome.

Acknowledgments
We thank Dr. Alexander H. Moore for referring the patient and Shirley Felix for her help in preparing the manuscript.

References

KEY WORDS • cerebral aneurysm • cerebral infarction • basilar artery
Pure motor hemiplegia secondary to a saccular basilar artery aneurysm.
M Fisher, T W Smith and R Jacobs

Stroke. 1988;19:104-107
doi: 10.1161/01.STR.19.1.104

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://stroke.ahajournals.org/content/19/1/104

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Stroke can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Stroke is online at:
http://stroke.ahajournals.org//subscriptions/