Short Communications

Nuclear Magnetic Resonance Image White Matter Lesions and Risk Factors for Stroke in Normal Individuals

Helmuth Lechner, MD, Reinhold Schmidt, MD, Götz Bertha, MD, Erwin Justich, MD, Hans Offenbacher, MD, and Gerhard Schneider, MD

The incidence, average number, and localization of lesions of the white matter detected by the T2-weighted nuclear magnetic resonance images among volunteers without cerebrovascular symptoms have been correlated with the number of risk factors for stroke. Accepted risk factors were arterial hypertension, diabetes mellitus, smoking, hypercholesterolemia, and cardiac disease. The 42 subjects examined were divided into Group A (0–1 risk factor, mean age 59.36 ± 5.73 years), Group B (2 risk factors, mean age 61.54 ± 8.33 years), and Group C (≥3 risk factors, mean age 62.57 ± 9.83 years). Multiple risk factors among the age-matched groups was accompanied by a highly significant increase (p < 0.001, Group A versus Group B; p < 0.01, Group A versus Group C) of the incidence of white matter lesions. The average number of white matter lesions was increased (p < 0.001) when Group A was compared with Groups B and C. Ninety-two percent of the white matter lesions were localized in watershed zones. Only 11 of the 155 abnormalities of the white matter detected by nuclear magnetic resonance imaging could be detected by computed tomography. White matter lesions in T2-weighted images appear to be an early stage of cerebrovascular disease. (Stroke 1988;19:263–265)

Nuclear magnetic resonance imaging (NMRI) demonstrates lesions of the white matter on T2-weighted images among 30% of individuals aged ≥ 60 years.1 There are positive correlations with advancing age but also with the occurrence of risk factors for stroke and cerebrovascular symptoms as described in retrospective studies.2,3 So far, there has been no prospective study comparing age-matched groups showing a relation between white matter lesions in subjects free of cerebrovascular symptoms and the number of coexisting factors for stroke.

Subjects and Methods

A prospective study of 42 volunteers was undertaken to establish the incidence of cerebrovascular risk factors in the Styrian population that lives in Graz, Austria, and the surrounding region. This cohort was divided into three groups according to the number of risk factors for stroke. Group A (22 persons, mean age 59.36 ± 5.73 years) exhibited zero to one risk factor for stroke. Group B (13 persons, mean age 61.54 ± 8.33 years) had two risk factors for stroke, and Group C (7 persons, mean age 62.57 ± 9.83 years) had three or more risk factors. The age distribution was in Group A 53–70 years, in Group B 44–76 years, and in Group C 44–72 years. Accepted risk factors for stroke were arterial hypertension (≥ 160 mm Hg systolic), diabetes mellitus (≥ 160 mg/dl empty stomach blood sugar level), hypercholesterolemia (≥ 250 mg/dl), smoking (≥ 10 cigarettes/day), and heart disease (coronary heart disease, arrhythmias, myocardial infarction).

All volunteers were examined twice over an interval of 17.8 ± 6.7 months. NMRI was carried out on all 42 persons using a superconducting magnet with a field strength of 1.5 T (Gyroscan s 15, Phillips). Using a multislice technique, the brain was imaged in the axial plane at 5-mm intervals. The spin-echo technique uses a pulse repetition time (TR) of 2,500 msec and echo times (TEs) of 30 and 60 msec. In addition, images were made in the sagittal plane with short pulse frequencies (spin-echo, TR/TE 600/30). The matrix was 128 × 256 pixel elements (pixels). All white matter lesions except caps and periventricular lines of hyperintensity were recorded with respect to their number and location.

Computed tomography (CT) was carried out on Somatom DR2, DR3, and DRH systems without the use of any contrast material. The slice thickness in the posterior fossa was 4 mm and in the supratentorial compartment 8 mm. Sixty percent of the investigations were accomplished with a 256 × 256-pixel matrix and the rest with a 512 × 512-pixel matrix.

To analyze the results, the Wilcoxon-Mann-Whitney U test and the Fisher test were applied.
TABLE 1. Frequency of Cerebrovascular Risk Factors in Three Differentiated Groups

<table>
<thead>
<tr>
<th>Risk factor</th>
<th>Group A (n = 22)</th>
<th>Group B (n = 13)</th>
<th>Group C (n = 7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>no. %</td>
<td>no. %</td>
<td>no. %</td>
<td>no. %</td>
</tr>
<tr>
<td>Arterial hypertension</td>
<td>2 (9.1)</td>
<td>0 (0)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Hypercholesterolemia</td>
<td>4 (18.2)</td>
<td>6 (46.2)</td>
<td>6 (85.7)</td>
</tr>
<tr>
<td>Cardiac disease</td>
<td>3 (13.6)</td>
<td>7 (53.8)</td>
<td>4 (57.1)</td>
</tr>
<tr>
<td>Smoking</td>
<td>0 (0)</td>
<td>2 (15.4)</td>
<td>1 (14.3)</td>
</tr>
</tbody>
</table>

Group A, 0–1 risk factor; Group B, 2 risk factors; Group C, ≥3 risk factors.

Results

Table 1 displays the risk factor distribution in the various groups. Eighteen (42.9%) of the 42 investigated persons had arterial hypertension, the most frequent cerebrovascular risk factor. The second most frequent risk factor was hypercholesterolemia (16 persons, 38.1%), followed by cardiac disease (14 persons, 33.3%). Six persons (14.3%) suffered from diabetes mellitus, and 3 (7.1%) smoked cigarettes. Twelve persons examined (28.6%) had no cerebrovascular risk factors. The second most frequent risk factor was hypercholesterolemia (16 persons, 38.1%), followed by diabetes mellitus (15.4%), and 3 (7.1%) smoked cigarettes. Twelve persons examined (28.6%) had no cerebrovascular risk factors. The most frequently occurring risk factors in the two groups characterized by multiple risk factors (Groups B and C) were arterial hypertension (69.2 and 100%), hypercholesterolemia (46.2 and 85.7%), and cardiac disease (53.8 and 57.1%). Four of the six persons with diabetes mellitus were in Group C; the other two were in Group B.

NMRI results analyzed according to the number of risk factors for stroke showed lesions of the white matter among seven persons (32%) in Group A. In Group B, white matter lesions were present in 12 persons (92%), and in Group C they were present in all seven (100%) (Table 2). There were significant differences between Groups A and B (p < 0.001) and between Groups A and C (p < 0.01). As the number of risk factors increased, the number of white matter lesions increased. The average number of white matter lesions in Group A was 1.86 ± 3.8, in Group B 5.62 ± 4.98, and in Group C 6.86 ± 8.55. Compared with Group A, significant differences exist for both Groups B and C at the 1% level. The fewest lesions present in a single subject was one, the most was 24.

In twenty-four (92.3%) of the 26 subjects with white matter lesions, these were found in the watershed zones between the middle and anterior and/or the middle and posterior cerebral arteries (Figure 1). In the distribution of the middle cerebral artery, white matter lesions were present in 17 persons (65.4%). In the supply of the anterior cerebral artery, white matter lesions were found among five persons (19.2%), and in the distribution of the posterior cerebral artery among four (15.4%). In addition, four persons (15.4%) showed lesions in the basal ganglia and three (11.5%) in the brainstem. Among 14 subjects (53.8%), white matter lesions were present in at least two of the above-mentioned territories. Punctate foci in the periventricular zone were found in six (23.1%) of the persons examined. They were all associated with lesions of the white matter of other locations as well.

Of 155 lesions identified by NMRI, only 11 were diagnosed by the use of the CT scanner. There were three false-positives diagnosed by CT and 144 false-negatives. None of the lesions detected by either method was smaller than 0.5 cm in diameter. Of the 11 lesions detected by both methods, six were in the area of the internal capsule, two in the thalamus, two in the region of the middle cerebral artery territory, and one in the posterior watershed or border zone. None of the three brainstem changes proved by NMRI were shown by CT.

Discussion

When white matter lesions are noted by T2-weighted NMRI in the elderly, several differential diagnoses should be considered. Certain similarities with the lesions seen in multiple sclerosis raise the question of a focus of demyelination; however, lesions of high water content causing structural changes of myelin in deep white matter also occur with cerebral ischemia. The age and the absence of widespread symptoms in...
Middle cerebral artery water-risk factors for stroke,7"9 were found nearly exclusively as
Middle-posterior cerebral artery by Gerard and Weisberg,2 who found both risk factors for
white matter lesions could be found among 92%; when
they occur together or in combination with other risk
factors. These are 1) a highly significant increase
underlines the enhancing effect of these two factors when
of cerebrovascular symptoms in the presence of cerebrovascular disease.

Regarding a small group of patients with bilateral stenosis of the internal carotid arteries, Kinkel et al11
discussed reversible developments of white matter changes in T2-weighted images after endarterectomies
confined to the boundary zones of their arterial supply and
concluded this to be a reliable sign of reversible perfusion
reduction. None of these changes were observed by CT
scan. We too have noted that CT is inferior to NMRI in
showing these changes. Only 11 of 155 lesions detected
by NMRI were diagnosed by CT scanning.

Positive correlations were found with lesions of the white
matter observed by NMRI scanning and risk
factors for stroke, which supports the view that these
changes are an early stage of cerebrovascular disease. As
mentioned above,11 these lesions do not preclude
their reversibility.

References
1. Bradley WG, Waluch V, Brant-Zawadzki M, Yadley RA,
Wycoff DR: Patchy periventricular white matter lesions in the
elderly: A common observation during NMR imaging. Nonin-
Med Imag 1986;1:35-41
Neurology 1986;36:998-1001
3. Awad IA, Spetzler RF, Hodak JA, Awad CA, Carey R: Incidental
subcortical lesions identified on magnetic resonance imaging in the elderly. I. Correlations with age and cerebro-
vascular risk factors. Stroke 1986;17:1084-1089
4. Pullicino P, Keeton L, Eskin T: CT white matter abnormalities
in patients over 60: Clinical and pathologic correlations
abstract. Neurology 1981;31(suppl):104
5. Asbury AK, Herrdon RM, Mc Farland HF, McDonald WI,
Mcllroy WJ, Paty DW, Prineas JW, Scheinberg LC, Wolinsky
JS: National multiple sclerosis society working group on
neuroimaging for the medical advisory board (editorial). Neuroradiology 1987;29:119
6. Sze G, De Armond SJ, Brant-Zawadzki M, Davis RL, Norman
D, Newton TH: Foci of MRI signal (pseudo lesions) anterior
to the frontal horns: Histologic correlations of a normal finding.
AJR 1986;147:331-337
assessment of the role of blood pressure in stroke. The
Framingham Study. JAMA 1970;214:301-310
infarction associated with occlusive arterial disease. Stroke
1971;2:295-318
9. Grunnet ML: Cerebrovascular disease: Diabetes and cerebral
10. Kannel WB, Dawber TR, McNamara PM: Vascular disease of
the brain epidemiologic aspects: The Framingham Study. Am
J Public Health 1965;55:1355
11. Kinkel PR, Kinkel WR, Jacobs L: Clinical value of nuclear
magnetic resonance imaging (NMR) for the evaluation of
patients with stroke, in Lechner H, Meyer JS, Ott E (eds):
Cerebrovascular Disease: Research and Clinical Management.

Table 1. Localization of White Matter Lesions (n=26)

<table>
<thead>
<tr>
<th>Lesion Type</th>
<th>No. with Lesions</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Middle cerebral artery watershed area</td>
<td>17</td>
<td>65.4</td>
</tr>
<tr>
<td>Anterior-middle cerebral artery watershed area</td>
<td>15</td>
<td>57.7</td>
</tr>
<tr>
<td>Middle-posterior cerebral artery</td>
<td>9</td>
<td>34.6</td>
</tr>
<tr>
<td>Anterior cerebral artery</td>
<td>5</td>
<td>19.2</td>
</tr>
<tr>
<td>Posterior cerebral artery</td>
<td>4</td>
<td>15.4</td>
</tr>
<tr>
<td>Basal ganglia</td>
<td>4</td>
<td>15.4</td>
</tr>
<tr>
<td>Brainstem</td>
<td>3</td>
<td>11.5</td>
</tr>
</tbody>
</table>
Nuclear magnetic resonance image white matter lesions and risk factors for stroke in normal individuals.

H Lechner, R Schmidt, G Bertha, E Justich, H Offenbacher and G Schneider

Stroke. 1988;19:263-265
doi: 10.1161/01.STR.19.2.263

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://stroke.ahajournals.org/content/19/2/263