Nuclear Magnetic Resonance Image White Matter Lesions and Risk Factors for Stroke in Normal Individuals

Helmuth Lechner, MD, Reinhold Schmidt, MD, Götz Bertha, MD, Erwin Justich, MD, Hans Offenbacher, MD, and Gerhard Schneider, MD

The incidence, average number, and localization of lesions of the white matter detected by the T2-weighted nuclear magnetic resonance images among volunteers without cerebrovascular symptoms have been correlated with the number of risk factors for stroke. Accepted risk factors were arterial hypertension, diabetes mellitus, smoking, hypercholesterolemia, and cardiac disease. The 42 subjects examined were divided into Group A (0–1 risk factor, mean age 59.36 ± 5.73 years), Group B (2 risk factors, mean age 61.54 ± 8.33 years), and Group C (≥3 risk factors, mean age 62.57 ± 9.83 years). Multiple risk factors among the age-matched groups was accompanied by a highly significant increase (p < 0.001, Group A versus Group B; p < 0.01, Group A versus Group C) of the incidence of white matter lesions. The average number of white matter lesions was increased (p < 0.001) when Group A was compared with Groups B and C. Ninety-two percent of the white matter lesions were localized in watershed zones. Only 11 of the 155 abnormalities of the white matter detected by nuclear magnetic resonance imaging could be detected by computed tomography. White matter lesions in T2-weighted images appear to be an early stage of cerebrovascular disease. (Stroke 1988;19:263-265)
Table 1. Frequency of Cerebrovascular Risk Factors in Three Differentiated Groups

<table>
<thead>
<tr>
<th>Risk factor</th>
<th>Group A (n = 22)</th>
<th>Group B (n = 13)</th>
<th>Group C (n = 7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arterial hypertension</td>
<td>91.5%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Hypercholesterolemia</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Cardiac disease</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Smoking</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
</tbody>
</table>

Group A, 0–1 risk factor; Group B, 2 risk factors; Group C, ≥3 risk factors.

Table 2. Nuclear Magnetic Resonance Imaging Findings and Number of Risk Factors

<table>
<thead>
<tr>
<th>Mean age (yr)</th>
<th>Group A (n = 22)</th>
<th>Group B (n = 13)</th>
<th>Group C (n = 7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>59.36 ± 5.73</td>
<td>61.54 ± 8.33</td>
<td>62.57 ± 9.83</td>
<td></td>
</tr>
</tbody>
</table>

Subjects with lesions

<table>
<thead>
<tr>
<th>Group A (32%)</th>
<th>Group B (92%)†</th>
<th>Group C (100%)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.86 ± 3.8</td>
<td>5.62 ± 4.98*</td>
<td>6.86 ± 8.55*</td>
</tr>
</tbody>
</table>

Group A, 0–1 risk factor; Group B, 2 risk factors; Group C, ≥3 risk factors, *p < 0.01; †p < 0.001.

Results

Table 1 displays the risk factor distribution in the various groups. Eighteen (42.9%) of the 42 investigated persons had arterial hypertension, the most frequent cerebrovascular risk factor. The second most frequent risk factor was hypercholesterolemia (16 persons, 38.1%), followed by cardiac disease (14 persons, 33.3%). Six persons (14.3%) suffered from diabetes mellitus, and 3 (7.1%) smoked cigarettes. Twelve persons examined (28.6%) had no cerebrovascular risk factors. The second most frequent risk factor was hypercholesterolemia (16 persons, 38.1%), followed by cardiac disease (14 persons, 33.3%). Six persons (14.3%) suffered from diabetes mellitus, and 3 (7.1%) smoked cigarettes. Twelve persons examined (28.6%) had no cerebrovascular risk factors. The most frequently occurring risk factors in the two groups characterized by multiple risk factors (Groups B and C) were arterial hypertension (69.2 and 100%), hypercholesterolemia (46.2 and 85.7%), and cardiac disease (53.8 and 57.1%). Four of the six persons with diabetes mellitus were in Group C; the other two were in Group B.

NMRI results analyzed according to the number of risk factors for stroke showed lesions of the white matter among seven persons (32%) in Group A. In Group B, white matter lesions were present in 12 persons (92%), and in Group C they were present in all seven (100%) (Table 2). There were significant differences between Groups A and B (p < 0.001) and between Groups A and C (p < 0.01). As the number of risk factors increased, the number of white matter lesions increased. The average number of white matter lesions in Group A was 1.86 ± 3.8, in Group B 5.62 ± 4.98, and in Group C 6.86 ± 8.55. Compared with Group A, significant differences exist for both Groups B and C at the 1% level. The fewest lesions present in a single subject was one, the most was 24.

In twenty-four (92.3%) of the 26 subjects with white matter lesions, these were found in the watershed zones between the middle and anterior and/or the middle and posterior cerebral arteries. In the distribution of the middle cerebral artery, white matter lesions were present in 17 persons (53.8%). In the supply of the anterior cerebral artery, white matter lesions were found among five persons (15.4%). In addition, four persons (15.4%) showed lesions in the basal ganglia and three (11.5%) in the brainstem. Among 14 subjects (53.8%), white matter lesions were present in at least two of the above-mentioned territories. Punctate foci in the periventricular zone were found in six (23.1%) of the persons examined. They were all associated with lesions of the white matter of other locations as well.

Of 155 lesions identified by NMRI, only 11 were diagnosed by the use of the CT scanner. There were three false-positives diagnosed by CT and 144 false-negatives. None of the lesions detected by either method was smaller than 0.5 cm in diameter. Of the 11 lesions detected by both methods, six were in the area of the internal capsule, two in the thalamus, two in the region of the middle cerebral artery territory, and one in the posterior watershed or border zone. None of the three brainstem changes proved by NMRI were shown by CT.

Discussion

When white matter lesions are noted by T2-weighted NMRI in the elderly, several differential diagnoses should be considered. Certain similarities with the lesions seen in multiple sclerosis raise the question of a focus of demyelination; however, lesions of high water content causing structural changes of myelin in deep white matter also occur with cerebral ischemia.* The age and the absence of widespread symptoms in

* p < 0.01; † p < 0.001.

Figure 1. Multiple small white matter lesions located in right hemisphere watershed zone between middle and posterior cerebral arteries detected by T2-weighted nuclear magnetic resonance imaging (1.5 T, repetition time 1,800 msec, echo time 60 msec).
Middle cerebral artery watershed area
Anterior-middle cerebral artery watershed area
Middle-posterior cerebral artery
Anterior cerebral artery
Posterior cerebral artery
Basal ganglia
Brainstem

<table>
<thead>
<tr>
<th>No. with lesions</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>65.4</td>
</tr>
<tr>
<td>15</td>
<td>57.7</td>
</tr>
<tr>
<td>9</td>
<td>34.6</td>
</tr>
<tr>
<td>5</td>
<td>19.2</td>
</tr>
<tr>
<td>4</td>
<td>15.4</td>
</tr>
<tr>
<td>4</td>
<td>15.4</td>
</tr>
<tr>
<td>3</td>
<td>11.5</td>
</tr>
</tbody>
</table>

Middle cerebral artery water-
Anterior cerebral artery
Middle-posterior cerebral artery
Anterior cerebral artery
Posterior cerebral artery
Basal ganglia
Brainstem

3 factors appear important for correlating white matter lesions with the occurrence of cerebrovascular risk factors. These are 1) a highly significant increase of white matter lesions in the groups with multiple risk factors compared with age-matched groups with no or a single risk factor, 2) the average number of lesions correlates positively with the increase in the number of associated risk factors, and 3) a predominant localization (92.3%) of the lesions in watershed areas that are known to be subject to chronically reduced perfusion in the presence of cerebrovascular disease.

Regarding a small group of patients with bilateral stenosis of the internal carotid arteries, Kinkel et al. discussed reversible developments of white matter changes in T2-weighted images after endarterectomies confined to the boundary zones of their arterial supply and concluded this to be a reliable sign of reversible perfusion reduction. None of these changes were observed by CT scan. We too have noted that CT is inferior to NMRI in showing these changes. Only 11 of 155 lesions detected by NMRI were diagnosed by CT scanning.

Positive correlations were found with lesions of the white matter observed by NMRI scanning and risk factors for stroke, which supports the view that these changes are an early stage of cerebrovascular disease. As mentioned above, these lesions do not preclude their reversibility.

References

Key Words: cerebrovascular disorders • nuclear magnetic resonance • risk factors
Nuclear magnetic resonance image white matter lesions and risk factors for stroke in normal individuals.
H Lechner, R Schmidt, G Bertha, E Justich, H Offenbacher and G Schneider

Stroke. 1988;19:263-265
doi: 10.1161/01.STR.19.2.263

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://stroke.ahajournals.org/content/19/2/263