TABLE 1. Summary of Cases Restarted on Warfarin

<table>
<thead>
<tr>
<th>Patient/age/sex</th>
<th>Valve type</th>
<th>AC duration (months)</th>
<th>PT (sec)</th>
<th>BP (mm Hg)</th>
<th>Hematoma location</th>
<th>Days AC stopped</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/77/M</td>
<td>Bjork-Shiley aortic</td>
<td>132</td>
<td>20/12</td>
<td>160/80</td>
<td>Parietal</td>
<td>8</td>
</tr>
<tr>
<td>2a/55/F</td>
<td>Bjork-Shiley mitral*</td>
<td>23</td>
<td>27/11</td>
<td>130/80</td>
<td>Parietal (L)</td>
<td>19</td>
</tr>
<tr>
<td>2b/55/F</td>
<td></td>
<td>.48</td>
<td>24/12</td>
<td>—</td>
<td>Temporal (R)</td>
<td>—</td>
</tr>
<tr>
<td>3/66/M</td>
<td>Bjork-Shiley aortic</td>
<td>129</td>
<td>21/12</td>
<td>130/80</td>
<td>Subdural</td>
<td>5</td>
</tr>
<tr>
<td>4/64/F</td>
<td>Ionescu-Shiley tricuspid</td>
<td>4</td>
<td>25/12</td>
<td>130/70</td>
<td>Subdural</td>
<td>13</td>
</tr>
<tr>
<td>5a/35/M</td>
<td>Bjork-Shiley aortic</td>
<td>32</td>
<td>26/12</td>
<td>160/80</td>
<td>Frontal (L)</td>
<td>27</td>
</tr>
<tr>
<td>5b/35/M</td>
<td></td>
<td>63†</td>
<td>32/12</td>
<td>130/80</td>
<td>Frontal (R)</td>
<td>—</td>
</tr>
<tr>
<td>6/47/F</td>
<td>Starr-Edwards mitral</td>
<td>48</td>
<td>40/12</td>
<td>140/70</td>
<td>Subdural</td>
<td>42</td>
</tr>
</tbody>
</table>

AC, anticoagulation with warfarin. AC duration is also interval since valve insertion. L, left; R, right. *Mantained also on 150 mg/day dipyridamole. †Staphylococcus aureus endocarditis.

Atrial Septal Aneurysm as a Cause of Cerebral Embolism in Young Patients

To the Editor:

The article by Belkin and associates,1 in which they reported a high prevalence of embolic events in a series of 36 consecutive patients with atrial septal aneurysm, has several additional important clinical implications besides those put forth by the authors. First, atrial septal aneurysm should always be considered among the cardiac causes of cerebral embolism that can be detected by echocardiography in young patients.2

Second, the consideration should be even more serious if the patient develops simultaneous embolic events in both the systemic and pulmonary circulation since bialtrial myxoma and paradoxical embolism are the only two other conditions that can cause 'bilateral' embolization.

Third, the frequent association of paradoxical embolism with right-to-left atrial shunting with atrial septal aneurysm found by Belkin and associates3 results from their aggressive use of contrast echocardiography.4 The sensitivity of contrast echocardiography in the diagnosis of paradoxical embolism, of course, might be further enhanced had they used it in conjunction with the Valsalva maneuver.3

As a matter of fact, when requesting echocardiography of a stroke patient in the evaluation for cardiogenic embolism, the referring physician should not only request contrast study but also specify the application of the Valsalva maneuver as routine echocardiography does not employ either of these maneuvers.4

Tsung O. Cheng, MD
Department of Medicine
George Washington University Medical Center
Washington, DC

References

The following is in reply:

To the Editor:

Dr. Cheng is certainly correct. We always employ the Valsalva maneuver when contrast echocardiographic studies are negative at rest.

Joseph Kisslo, MD
Department of Medicine
Duke University Medical Center
Durham, North Carolina

Does Transcranial Doppler Ultrasonography Provide Information About Cerebral Microcirculatory Flow?

To the Editor:

In his editorial, J.C. Grotta1 regrets that "easily administered bedside studies such as ... transcranial Doppler do not provide information about microcirculatory flow". According to our experience with transcranial Doppler ultrasonography, this statement cannot be made unmodified. We use transcranial Doppler to detect changes of median artery flow velocity during breath-holding tests or Valsalva maneuvers.2,3 These transcranial Doppler examinations can be performed as simple bedside tests. In patients with lacunar infarctions or white matter lucencies due toBinswanger's disease, the expected changes of median cerebral artery blood flow velocity during breath-holding tests or Valsalva maneuvers are often diminished or absent (unpublished observations). Similar abnormalities of autonomic regulation are detectable by transcranial Doppler measurements in patients with longstanding arterial hypertension but without lacunar infarctions or white matter lucencies on computed tomography examinations. A study to describe the specificity and sensitivity of these transcranial Doppler tests in detecting cerebral microvascular disease is under way at our department.

M. Reinecke
H.D. Langohr
B. Görzel
Departments of Neurology and Neurophysiology
Staatliche Kliniken Fulda
Fulda, Federal Republic of Germany

Department of Medicine
George Washington University Medical Center
Washington, DC
Does transcranial Doppler ultrasonography provide information about cerebral microcirculatory flow?

M Reinecke, H D Langohr and B Görzel

Stroke. 1988;19:408-409
doi: 10.1161/01.STR.19.3.408.a

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://stroke.ahajournals.org/content/19/3/408.1.citation

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Stroke can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Stroke is online at:
http://stroke.ahajournals.org//subscriptions/