

Table 1. Summary of Cases Restarted on Warfarin

<table>
<thead>
<tr>
<th>Patient/age/sex</th>
<th>Valve type</th>
<th>AC duration (months)</th>
<th>PT (sec)</th>
<th>BP (mm Hg)</th>
<th>Hematoma location</th>
<th>Days AC stopped</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/77/M</td>
<td>Bjork-Shiley aortic</td>
<td>132</td>
<td>20/12</td>
<td>160/80</td>
<td>Parietal</td>
<td>8</td>
</tr>
<tr>
<td>2a/55/F</td>
<td>Bjork-Shiley mitral*</td>
<td>23</td>
<td>27/11</td>
<td>130/80</td>
<td>Parietal (L)</td>
<td>19</td>
</tr>
<tr>
<td>2b/55/F</td>
<td></td>
<td>.48</td>
<td>24/12</td>
<td></td>
<td>Temporal (R)</td>
<td></td>
</tr>
<tr>
<td>3/66/M</td>
<td>Bjork-Shiley aortic</td>
<td>129</td>
<td>21/12</td>
<td>130/80</td>
<td>Subdural</td>
<td>5</td>
</tr>
<tr>
<td>4/64/F</td>
<td>Ionescu-Shiley tricuspid</td>
<td>4</td>
<td>25/12</td>
<td>130/70</td>
<td>Subdural</td>
<td>13</td>
</tr>
<tr>
<td>5a/35/M</td>
<td>Bjork-Shiley aortic</td>
<td>32</td>
<td>26/12</td>
<td>160/80</td>
<td>Frontal (L)</td>
<td>27</td>
</tr>
<tr>
<td>5b/35/M</td>
<td></td>
<td>63†</td>
<td>32/12</td>
<td>130/80</td>
<td>Frontal (R)</td>
<td></td>
</tr>
<tr>
<td>6/47/F</td>
<td>Starr-Edwards mitral</td>
<td>48</td>
<td>40/12</td>
<td>140/70</td>
<td>Subdural</td>
<td>42</td>
</tr>
</tbody>
</table>

AC, anticoagulation with warfarin. AC duration is also interval since valve insertion. L, left; R, right.

*Maintained also on 150 mg/day dipyridamole.
†*Staphylococcus aureus* endocarditis.

The following is in reply:

To the Editor:

Dr. Cheng is certainly correct. We always employ the Valsalva maneuver when contrast echocardiographic studies are negative at rest.

Joseph Kisslo, MD
Department of Medicine
Duke University Medical Center
Durham, North Carolina

Does Transcranial Doppler Ultrasonography Provide Information About Cerebral Microcirculatory Flow?

To the Editor:

In his editorial, J.C. Grotta regrets that "easily administered bedside studies such as... transcranial Doppler do not provide information about microcirculatory flow". According to our experience with transcranial Doppler ultrasonography, this statement cannot be made unmodified. We use transcranial Doppler to detect changes of median artery flow velocity during breathholding tests or Valsalva maneuvers. These transcranial Doppler examinations can be performed as simple bedside tests. In patients with lacunar infarctions or white matter lucencies on computed tomography, the expected changes of median cerebral artery blood flow velocity during breathholding or the Valsalva maneuver are often diminished or absent (unpublished observations). Similar abnormalities of autonomic regulation are detectable by transcranial Doppler measurements in patients with longstanding arterial hypertension but without lacunar infarctions or white matter lucencies on computed tomography examinations. A study to determine the specificity and sensitivity of these transcranial Doppler tests in detecting cerebral microvascular disease is underway at our department.

M. Reinecke
H.D. Langhro
B. Görzel
Departments of Neurology and Neurophysiology
Städtische Kliniken Fulda
Fulda, Federal Republic of Germany

References

Does transcranial Doppler ultrasonography provide information about cerebral microcirculatory flow?
M Reinecke, H D Langohr and B Görzel

Stroke. 1988;19:408-409
doi: 10.1161/01.STR.19.3.408.a

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://stroke.ahajournals.org/content/19/3/408.1.citation