Lateralized Effect of Cerebral Infarction on Spinal Fluid Monoamine Metabolite Concentrations in Rats

Rajesh M. Parikh, MD, Alan Justice, PhD, Timothy H. Moran, PhD, and Robert G. Robinson, MD

Using a rat model of stroke, we studied the effect of unilateral middle cerebral artery ligation on cerebrospinal fluid monoamine metabolites at different intervals over a 40-day postoperative period. Male Sprague-Dawley rats were divided into four groups: an unoperated control group (n=9), a sham-operated group (n=9), a right middle cerebral artery ligation group (n=10), and a left middle cerebral artery ligation group (n=10). One hundred microliters of cerebrospinal fluid were collected percutaneously from the cerebellomedullary cisterna just before and 5, 20, and 40 days after the surgical procedure. Monoamine metabolites – 3-methoxy-4-hydroxyphenylglycol (MHPG), 5-hydroxyindoleacetic acid (5-HIAA), and homovanillic acid (HVA) – were measured using high-performance liquid chromatography. MHPG concentration in the right lesion group was significantly depleted from control levels 5, 20, and 40 days after surgery. No such depletion was observed in the left lesion rats. Concentration of 5-HIAA was relatively lower at Days 5 and 20 in the right lesion group than in the left lesion group. HVA concentration did not differ among the groups at any time. Our study has demonstrated a differential effect of unilateral ischemia on cerebrospinal fluid neurochemistry in rats dependent on the cerebral hemisphere involved. (Stroke 1988; 19:472-475)
scope, a 6-0 ophthalmic suture was passed through the dura behind the MCA and out through the dura again. The MCA and overlying dura were ligated, and the MCA was severed distal to the tie using microscissors. The temporal muscle was flapped over the craniotomy site. Rats were randomly selected for ligation of either the right or left MCA. The surgical approach on both sides was identical, and there appeared to be no gross anatomic differences between the right and left MCA. Sham operations consisted of performing the craniotomy on either the right or left side without ligating the MCA. We also included a group of unoperated control rats. The postoperative mortality associated with the procedure was 4 of 42 rats. The postoperative morbidity, in terms of obvious discomfort to the rats, appeared to be negligible based on their rapid return to preoperative levels of food intake and activity within a couple of days after surgery.

Collection of Cerebrospinal Fluid

One hundred microliters of CSF were collected by a percutaneous technique from the cerebellomedullary cistern under ether (n = 34) or chloral hydrate (n = 4) anesthesia just before MCA ligation as well as 5, 20, and 40 days after surgery.

Rats were restricted from access to the running wheel during the night before CSF collection to minimize the effects of activity on concentrations of the monoamine metabolites. CSF collections were done between 10 AM and noon and, for the same rat, within 5 minutes from one sample day to the next to minimize any effect of diurnal variation in these metabolites.

The CSF monoamine metabolites free 3-methoxy-4-hydroxyphenylglycol (MHPG), 5-hydroxyindoleacetic acid (5-HIAA), and homovanillic acid (HVA) were measured using high-performance liquid chromatography, a modification of the assay described by Zaczek and Coyle. In our assay, the mobile phase was 13.6 g sodium acetate, 2.0 g heptane sulfonate, and 60 ml acetonitrile in 1,940 ml distilled water at pH 3.2. The liquid chromatographic system consisted of an Altex 110 pump (Alltech Associates, Inc., Deerfield, Illinois), a Rheodyne 7120 injector (Cotati, California), a Brownlee Laboratories RP 18 46 x 100 mm column (Santa Clara, California), and an ESA, Inc. 5100A electrochemical detector (Bedford, Massachusetts). The eluting flow rate was adjusted to 1.5 ml/min, and 20 µl of each CSF sample was injected on the separation system after centrifugation. The electrochemical detection system consisted of an ESA 5011 analytical cell and an ESA 5021 guard cell with an ESA 5100A electrochemical detector. The monoamine metabolites were identified and quantified with a Hewlett-Packard Co. 3390 A detector (Palo Alto, California) by comparing their retention times (3.2, 14.3, and 18.8 minutes for MHPG, 5-HIAA, and HVA, respectively) and their peak heights with fresh mixtures containing an internal standard (3,4-dihydroxybenzylamine, retention time 14.4 minutes).

Data Analysis

Each metabolite was analyzed separately using repeated-measures analysis of variance (ANOVA). Individual differences were determined using planned analyses t tests, which used a pooled error term.

Results

Concentrations of all three CSF monoamine metabolites were not significantly different between the sham-operated (n = 9) and the unoperated (n = 9) controls at any time. Hence, these two groups were combined into a single control group (n = 18) for comparison with the right MCA ligation (n = 10) and left MCA ligation (n = 10) rats.

There was a significant group × time interaction (F3,105 = 2.82, p < 0.05) for MHPG. A planned comparison analysis revealed significant reduction in MHPG concentrations in the right MCA ligation group compared with the control group 5 (p < 0.05), 20 (p < 0.01), and 40 (p < 0.01) days after surgery and a trend toward reduced MHPG concentration in the right MCA ligation rats compared with left MCA ligation rats 5 (p < 0.1) and 20 (p < 0.1) days after surgery (Table 1, Figure 1). No differences were seen between the left MCA ligation and control groups.

Repeated-measures ANOVA showed a significant group × time interaction (F3,105 = 3.11, p < 0.01) for 5-HIAA. A planned comparison analysis attributed the source of the differences to lower 5-HIAA concentrations in the right than the left MCA ligation group 5 (p < 0.01) and 20 (p < 0.01) days after surgery (Table 1). There was a similar trend when comparing the right MCA ligation with the control rats on Day 5 (p < 0.1), while there were no differences between the left MCA ligation and control rats at any time (Table 1, Figure 1).

TABLE 1. Cerebrospinal Fluid Monoamine Metabolites in Rats With or Without Middle Cerebral Artery Ligation

<table>
<thead>
<tr>
<th></th>
<th>Control (n = 18)</th>
<th>Left (n = 10)</th>
<th>Right (n = 10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-Methoxy-4-hydroxyphenylglycol</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preoperative</td>
<td>18.1 ± 1.1</td>
<td>17.5 ± 2.4</td>
<td>19.1 ± 1.4</td>
</tr>
<tr>
<td>Day 5</td>
<td>18.8 ± 2.0</td>
<td>18.4 ± 1.9</td>
<td>13.8 ± 1.2*</td>
</tr>
<tr>
<td>Day 20</td>
<td>19.3 ± 1.3</td>
<td>17.2 ± 1.2</td>
<td>12.7 ± 1.2†</td>
</tr>
<tr>
<td>Day 40</td>
<td>18.3 ± 1.4</td>
<td>15.8 ± 1.8</td>
<td>12.8 ± 1.4†</td>
</tr>
<tr>
<td>5-Hydroxyindoleacetic acid</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preoperative</td>
<td>69.6 ± 5.0</td>
<td>72.5 ± 5.6</td>
<td>77.9 ± 7.7</td>
</tr>
<tr>
<td>Day 5</td>
<td>88.1 ± 5.9</td>
<td>99.4 ± 6.6</td>
<td>72.0 ± 5.5‡</td>
</tr>
<tr>
<td>Day 20</td>
<td>79.4 ± 2.8</td>
<td>91.6 ± 8.1</td>
<td>66.2 ± 4.4‡</td>
</tr>
<tr>
<td>Day 40</td>
<td>85.4 ± 6.4</td>
<td>77.8 ± 5.5</td>
<td>77.8 ± 6.9</td>
</tr>
<tr>
<td>Homovanillic acid</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preoperative</td>
<td>11.8 ± 1.1</td>
<td>12.5 ± 1.1</td>
<td>13.2 ± 2.2</td>
</tr>
<tr>
<td>Day 5</td>
<td>14.1 ± 2.1</td>
<td>14.3 ± 2.3</td>
<td>10.5 ± 1.7</td>
</tr>
<tr>
<td>Day 20</td>
<td>11.7 ± 1.1</td>
<td>13.8 ± 1.4</td>
<td>9.0 ± 0.5</td>
</tr>
<tr>
<td>Day 40</td>
<td>14.2 ± 1.0</td>
<td>13.6 ± 1.3</td>
<td>14.1 ± 1.7</td>
</tr>
</tbody>
</table>

Values are mean ± SEM ng/ml.
* p < 0.05 different from control.
† p < 0.05 different from left ligation.
Figure 1. Changes in cerebrospinal fluid monoamine metabolite concentrations over 40 days in rats with middle cerebral artery ligation. Values are percent of preoperative concentration for free 3-methoxy-4-hydroxyphenylglycol (M.H.P.G.), 5-hydroxyindoleacetic acid (5-H.I.A.A.), and homovanillic acid (H.V.A.). LT. LES., left middle cerebral artery lesion; RT. LES., right middle cerebral artery lesion.

There was no significant group x time interaction ($F_{6,108} = 1.54$, $p > 0.1$) for HVA. Thus, no significant changes in HVA concentration were detected among any of the three groups at any time (Table 1, Figure 1).

Discussion

Our study has demonstrated a differential effect of ischemic stroke on CSF neurochemistry in rats dependent on the cerebral hemisphere involved.

Human studies using acute poststroke measures of CSF biogenic amines and their metabolites have shown a generalized and lateralized increase in concentrations, with left-sided strokes being associated with greater increases.\cite{1,16-19} Whereas our present study has shown a lateralized effect of stroke, it is in a direction opposite to that seen in acute poststroke human studies. However, since our earliest measure in rats was 5 days after the stroke, these measures were not as close to the ischemic event as the 2–3 days after stroke in the human studies cited above. Other investigators who have studied changes in brain catecholamine concentrations at times much closer to the injury have reported that there is an initial increase in catecholamine concentrations within a few hours after surgery, followed by a more prolonged decrease.\cite{20,21}

Our findings of time-dependent depletion of monoamine metabolites following right MCA ligation is consistent with our earlier findings on the brain chemistry of rats with similar lesions.\cite{1,2} This supports the prevalent acceptance of CSF neurochemistry as a reflection of brain chemistry.\cite{22-24} In addition, the differences in CSF metabolites following right or left hemisphere ischemia are unlikely to have resulted from interhemispheric differences in lesion size or location since we have demonstrated that MCA ligation does not produce significant differences in mean lesion volume or location between the two hemispheres.\cite{3} It is also unlikely that differences in activity could account for these findings because the rats were restricted to a small cage for 24 hours before CSF sampling.

Although the relation between our findings in rats and those in humans is only speculative, it is perhaps relevant that in a recent study of chronic stroke patients we found a significant increase in N-methylspiperone binding as measured by positron emission tomography (PET) following right but not left hemisphere stroke.\cite{25} In our present study, we found a significant difference in the levels of CSF 5-HIAA between rats with right and left hemisphere lesions 5 and 20 days after the stroke. These differences may have been due to a relative increase in the CSF 5-HIAA concentration in the left MCA ligation rats or a relative decrease in the right MCA ligation group or possibly to a combination of both these factors. Nonetheless, our findings of an asymmetric serotonergic response to cerebral ischemia in humans as well as in rats suggests that there may be important parallels between rat and human brains in their physiologic or neurochemical responses to stroke.

Acknowledgments

The authors would like to thank Victoria Stranov and John Bowersox for assistance in conducting the study and Mary Bell and Diane Van Hoof for typing the manuscript.

References

20. Reis DJ, Gilad G, Pickel VM, Joh TH: Reversible changes in the activities and amounts of tyrosine hydroxylase in dopamine neurons of the substantia nigra in response to axonal injury as studied by immunohistochemical and immunocytochemical methods. *Brain Res* 1978;144:325-342

21. Ross RA, Joh TH, Reis DJ: Reversible changes in the accumulation and activity of tyrosine hydroxylase and dopamine B hydroxylase in neurons of the locus coeruleus during the retrograde reaction. *Brain Res* 1975;92:57-72

KEY WORDS • catecholamines • cerebral infarction • cerebrospinal fluid • rats
Laterized effect of cerebral infarction on spinal fluid monoamine metabolite concentrations in rats.
R M Parikh, A Justice, T H Moran and R G Robinson

Stroke. 1988;19:472-475
doi: 10.1161/01.STR.19.4.472

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://stroke.ahajournals.org/content/19/4/472

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Stroke can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Stroke is online at:
http://stroke.ahajournals.org/subscriptions/