Stroke Risk Factors Prepare Rat Brainstem Tissues for Modified Local Shwartzman Reaction

J.M. Hallenbeck, MD, A.J. Dutka, MD, P.M. Kochanek, MD, A. Siren, G.H. Pezeshkpour, and G. Feuerstein, MD

Stroke risk factors such as hypertension, diabetes, advanced age, and genetic predisposition to stroke were demonstrated to prepare rat brainstem tissues for a modified local Shwartzman reaction. A single intracisternal injection of endotoxin provoked the reaction, and affected rats manifested neurologic deficits accompanied by pathologic lesions. Brainstem infarcts developed in only a small proportion of rats without recognized risk factors after intracisternal injection of endotoxin. Thus, stroke risk factors, which are ordinarily regarded as operating through acceleration of atherosclerosis, may predispose to brain ischemia by local effects on brain microcirculation such as those thought to underlie preparation of a tissue for the local Shwartzman reaction. (Stroke 1988;19:863–869)

Risk factors for stroke such as hypertension, diabetes, and advanced age are generally thought to express themselves by accelerating atherosclerosis. The atherosclerotic process becomes most pronounced at various sites in the extracranial arteries, and associated strokes are usually attributed to hemodynamic or thromboembolic mechanisms. Each of these pathophysiologic concepts leads to observable predictions. Hemodynamic theories argue for a direct proportion between the degree of carotid stenosis and the frequency of transient ischemic attack (TIA) or stroke. Thromboembolic theories lead to the expectation that the extent of platelet accumulation on carotid plaques correlates with ipsilateral ischemic events. Neither prediction has been fulfilled in several recent studies.

The possibility that activation of systems mediating coagulation, inflammation, and immunity perturb the local regulation of hemostasis in parenchymal and extraparenchymal brain vessels has been less commonly cited as a potential pathogenetic mechanism for stroke. Recent studies indicate that the function of morphologically intact endothelium can be altered by mediators generated from both soluble and cellular systems in blood. Under the influence of these mediators, the luminal surface of the endothelium is transformed from an anticoagulant to a procoagulant membrane, and focal fibrin, platelet, and leukocyte deposition is initiated on the blood vessel wall. Such transformations of the endothelial surface can focus a systemic activation of coagulation to produce circumscribed tissue damage by means of a paradigm termed the "local Shwartzman reaction".

The local Shwartzman reaction is elicitable by various mediators. At a minimum, it involves preparation of a tissue by injection of a mediator to induce focal leukocyte accumulation, followed by a provocative step that involves systemic activation of intravascular coagulation. The reaction is classically produced in rabbits by two injections of endotoxin. Endotoxin is derived from the cell wall of Gram-negative bacteria and is a natural substance to which animals and humans are repeatedly exposed. It has powerful effects on a whole panoply of host systems mediating inflammation and
ally impossible to produce by the classical, two-step
administration of cortisone, thorotrast, or trypan blue can
induce the presence of an altered state such as pregnancy,
diabetes, or hyperlipemia. A single intradermal injection
of endotoxin in a rat made vulnerable by prior administration
of cortisone, thromboplastin, or trypan blue can also produce a modified local Shwartzman reaction.\(^1\)

Instead, a modified Schwartzman reaction is generally produced by a single injection of endotoxin.\(^1\) In rabbits rendered vulnerable by prior administration of cortisone, thromboplastin, or trypan blue, endotoxin can also produce a modified local Shwartzman reaction.\(^1\)

This series of experiments was conducted to determine whether several established risk factors for stroke could prepare brain tissue locally so that a single injection of endotoxin would produce a modified local Shwartzman reaction.

Materials and Methods

The following rats with stroke risk factors were studied as outlined in Table 1: 14–16-week-old spontaneously hypertensive rats (SHR) (Charles River Laboratories, Inc., Raleigh, North Carolina), 14–16-week-old Sprague-Dawley (SD) rats (Taconic Farms, Inc., Germantown, New York) rendered diabetic by treatment with streptozotocin, 14–16-week-old aged SD rats (Harlan S-D, Indianapolis, Indiana), and 14–16-week-old stroke-prone spontaneously hypertensive rats (SHR-SP) (Dr. M. Diolulu, NHLBI, NIH), and 11-month-old retired breeder SHR (Charles River). The control rats without stroke risk factors were 14–16-week-old SD (Taconic Farms) and 14–16-week-old Wistar rats (Charles River). The mean arterial blood pressure (MAPB) of SHR was 155 ± 7 mm Hg, of SHR-SP 178 ± 10 mm Hg, and of normotensive rats 109 ± 3 mm Hg.

SD rats (290–320 g) to be rendered diabetic were treated with 65 mg/kg i.p. streptozotocin on Days 1 and 8 according to the technique of Campos et al.\(^2\) The SD rats' weights, water consumption, and blood glucose levels were monitored until the glucose levels exceeded 400 mg%. (usually within 14 days). The SD rats were kept for another 14 days with blood glucose levels of >400 mg% before intracisternal injections as described below.

Rats were anesthetized with halothane, and PE-50 catheters were inserted into the right jugular vein and the right carotid artery through a midcervical incision. The catheters were later tunneled under the skin to exit at the nape, where they were further secured by an adhesive collar and spring wire as previously described.\(^3\) The rats were placed on a stereotactic device, and a midline incision was made from the occiput to cervical vertebrae C1–C2. The muscles of the back of the neck were separated by blunt dissection, and the atlanto-occipital membrane was exposed. A total volume of 10 μL of either Escherichia coli 0111:B4 lipopolysaccharide phenol extract (endotoxin) (Sigma Chemical Co., St. Louis, Missouri) dissolved in distilled water or water alone was injected into the cisterna magna with a Hamilton syringe attached to a needle fitted with a guard to prevent penetration of more than the 500-μm tip. The needle was inserted through the membrane and stabilized at a depth of 500 μm by a micromanipulator. After aspiration of clear cerebrospinal fluid (CSF) confirmed proper placement, endotoxin or water was injected over 10 minutes. An additional 2 minutes were allowed for dispersal of the injected fluid before withdrawal of the needle; inspection for bleeding preceded closure of the surgical sites. The rats were then allowed to recover from anesthesia in individual cages with food and water ad libitum.

Prior to the intracisternal injection of endotoxin or water, all rats underwent a baseline neurologic examination derived from the method of Tupper and Wallace.\(^4\) Based on observed deficits, the functional grade was assessed: Grade 0, normal rat; Grade 1, lethargy, no signs of paresis, spontaneous movements clearly reduced; Grade 2, clear signs of paresis in at least one limb but able to walk; Grade 3, severe paresis/paralysis, unable to walk; Grade 4, dead. The rats were examined again 24 hours after the intracisternal injection of endotoxin or water. Differences between groups were determined by means of χ² and Fisher's exact probability tests.

After the intracisternal injection of endotoxin or water, selected rats were given 80 mg/kg pentobarbital i.v. or i.p. before exposing the heart for perfusion fixation. A 16-gauge blunted needle was inserted into the left ventricle, and the right atrium

<table>
<thead>
<tr>
<th>Rats</th>
<th>Age</th>
<th>Stroke risk factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>With risk factors for stroke</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spontaneously hypertensive</td>
<td>14–16 wk</td>
<td>Hypertension</td>
</tr>
<tr>
<td>Streptozotocin-treated Sprague-Dawley</td>
<td>14–16 wk</td>
<td>Diabetes</td>
</tr>
<tr>
<td>Aged Sprague-Dawley</td>
<td>24 mo</td>
<td>Advanced age</td>
</tr>
<tr>
<td>Stroke-prone spontaneously hypertensive</td>
<td>14–16 wk</td>
<td>Genetically prone to stroke</td>
</tr>
<tr>
<td>Spontaneously hypertensive retired breeders</td>
<td>11 mo</td>
<td>Protracted hypertension</td>
</tr>
<tr>
<td>Control</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sprague-Dawley</td>
<td>14–16 wk</td>
<td>None</td>
</tr>
<tr>
<td>Wistar</td>
<td>14–16 wk</td>
<td>None</td>
</tr>
</tbody>
</table>

TABLE 1. Types of Rats Studied
The experiments reported herein were conducted according to the principles set forth in the Guide for the Care and Use of Laboratory Animals, Institute of Laboratory Animal Resources [National Research Council, Department of Health and Human Services, Pub. No. (NIH)85–23].

Results

As shown in Figure 1, SHR with the stroke risk factor hypertension were more vulnerable to paralysis or death with a single intracisternal dose of endotoxin than SD rats with no known stroke risk factors. This increased vulnerability was maintained through most of the doses ranging from 0.45 to 3.60 mg/kg. All moribund states and observed progressions to death involved a profound and obvious paralysis; therefore, death was attributed to neuroaxis damage affecting primarily the brainstem rather than to endotoxin shock and was included with paralysis as a positive response. This interpretation, that death was a direct result of brainstem damage, was supported by several lines of evidence. In moribund rats, microscopic pathology revealed hemorrhagic and pale infarcts in the medulla and pons with preservation of the cerebellar Purkinje cells, a cell type that would have exhibited selective vulnerability if the global ischemia associated with shock had occurred (Figure 2). In parallel studies, in which 1.8 mg/kg i.v. endotoxin depressed MABP to 90 mm Hg in SD rats (n = 9) and to 95 mm Hg in SHR (n = 11), this minimum, which occurred about 1 hour after the injection of endotoxin, exceeded shock levels by a considerable margin and was followed by a steady climb toward baseline values. Also, MABP measured in several moribund rats was in the normal range, thus eliminating shock as the cause for each such rat’s death. Finally, the histopathology of shock organs such as lungs, kidneys, and small bowel was found to be normal in moribund rats (Figure 3).

At an intracisternal endotoxin dose of 1.8 mg/kg, groups of rats with other stroke risk factors such as diabetes, advanced age, protracted hypertension, or genetic predisposition to stroke were compared with SD rats and Wistar rats, which are progenitors of SHR (Figure 4). All groups with recognized stroke risk factors reacted to the provocative dose of endotoxin by developing a significantly increased incidence of paralysis.

In parallel studies, 12 rats were assessed for paresis/paralysis after an intravenous endotoxin dose of 1.8 mg/kg. Grade 2–3 deficits were noted in five of six SHR treated in this manner. One SD rat died with catheters looped around its neck; no neurologic deficits were observed in the remaining five.

Intracisternally water injection in 40 rats representing the various groups under study produced only two instances of neurologic deficit and no deaths, which probably reflects the risk for mechanical trauma to the brainstem during injection. Light microscopic analysis of brain sections from 15 Grade 2–4 rats that had received endotoxin revealed brainstem infarcts as mentioned above (Figure 2) as well as infrequent small infarcts in gray and white matter of the forebrain. The correlation between neurologic impairment or moribund state and the occurrence of brainstem lesions was excellent. None of seven unaffected rats that had received endotoxin had parenchymal lesions, and all but one affected rat that had received endotoxin had identifiable lesions in the brainstem. A meningeal infiltrate of polymorphonuclear leukocytes was a constant feature in rats that had received endotoxin.

Discussion

The results of our study demonstrate that several established risk factors for stroke prepare brainstem tissue for ischemia and hemorrhage following a provocative dose of endotoxin administered intracisternally or intravenously. This finding is potentially relevant to human stroke in that the altered state of cerebral blood vessels induced by stroke...
risk factors could render such vessels locally vulnerable to thrombosis or hemorrhage in response to transient activation of intravascular coagulation by any of a wide variety of mechanisms. The site of thrombus formation would be determined by the preexisting vessel disturbance and not by the process activating intravascular coagulation, thereby following the local Shwartzman reaction paradigm. In this view, stroke would develop as the focal consequence of disturbed regulation of systems mediating coagulation, inflammation, and immunity, which are normally required for preservation of the integrity of the organism. Endotoxin injection in our study served to unmask the prepared state of the parenchymal vasculature in rats with stroke risk factors.

Our findings can be interpreted within the context of endotoxin's effects on host mediation systems and the evolving understanding of the endothelium's role as a local regulator of hemostasis. Studies revealing a paravascular circulation of CSF have...
indicated that a macromolecular tracer introduced into the CSF in the region of the cisterna magna permeates the brainstem within several minutes along the Virchow-Robin space. The brainstem parenchyma, therefore, should be imbued with endotoxin minutes after its introduction into the intracisternal space. The effects of endotoxin on host mediation systems include activation of coagulation via both the extrinsic and intrinsic pathways; activation of the classical and alternate complement pathways; activation of platelets and granulocytes; stimulation of monocytes/macrophages to release procoagulant substances, interleukin-1, tumor necrosis factor/cachectin, eicosanoids, and collagenase; and further, endotoxin directly interacts with endothelium, converting it from an essentially anticoagulant surface to a procoagulant surface.14

Despite this redoubtable array of effects, a single intracisternal injection of 1.8 mg/kg endotoxin into rats devoid of stroke risk factors had very little observable effect on brain tissue by neurologic and pathologic examination in the great majority. Instead, some local parenchymal change seemed necessary to confer vulnerability to a single provocative dose of endotoxin. Under ordinary circumstances, endothelium exposes an actively anticoagulant surface to blood flowing through a tissue. Elements of this active anticoagulant property include the thrombomodulin-protein C-protein S system23 (except perhaps in brain microcirculation26), heparinlike molecules on the luminal surface that bind antithrombin III,25 synthesis and release of prostacyclin (PGI2),26 and synthesis and release of tissue plasminogen activator.27 Under the influence of polypeptide and protein mediators such as interleukin-1, tumor necrosis factor/cachectin, and thrombin,10,28 this property undergoes a local reversal and the affected endothelium becomes an actively procoagulant surface. Specific changes include synthesis and surface expression of tissue factor, synthesis and release of interleukin-1, release of factor VIII/von Willebrand factor, and enhanced adhesion of monocytes and granulocytes.11,28-31 In addition, anticoagulant mechanisms such as the thrombomodulin-protein C-protein S system are inhibited.32 The local procoagulant process can become deviation-amplifying as more monocytes and other cells are recruited,33 and endothelium both generates and responds to interleukin-1 and thrombin.10,28 The spectrum of endotoxin effects would seem ideal for setting into motion such a positive feedback process.14,33

Accordingly, local preparation of a tissue might involve the local interaction of mononuclear cells and endothelium. The marked susceptibility of athymic nude mice to the Shwartzman reaction has been attributed to the heightened activity of their mononuclear cells34; mononuclear cell activation caused by BCG immunization produced an enhanced sensitivity to endotoxin in normally resistant C3H/HeJ mice.35 These studies indicate that mononuclear cell activation is associated with increased sensitivity to the Shwartzman reaction. Several risk factors for stroke increase the adhesion and emigration of mononuclear cells. This has been observed in rats rendered hypertensive in several ways,36 as well as in hypercholesterolemia, where the increased mononuclear cell adhesion is regarded as the initial step in the atherosclerotic process.37 In individuals with stroke risk factors, local adhesion and accumulation of mononuclear cells in brain parenchymal vessels could proceed in conjunction with the atherosclerotic process. Alternatively, the dense accumulation of activated macrophages38 that occurs in the developing extracranial atherosclerotic plaque could export locally produced monokines such as interleukin-1 and tumor necrosis factor/cachectin distally into the brain microcirculation and contribute to the prepared state of brain parenchymal vessels. Further study of mononuclear cell/endothelial cell interactions as influenced by stroke risk factors could contribute to our understanding of the mechanisms by which thrombotic strokes are precipitated.

Acknowledgments
Statistical consultation by Karen Pettigrew, PhD, National Institute of Mental Health. Helpful suggestions by Stephanie Vogel, PhD.

References
22. Rennels ML, Gregory TF, Blauamis OR, Fujimoto K, Brady PA: Evidence for a "paravascular" fluid circulation in the mammalian central nervous system, provided by the rapid distribution of tracer protein throughout the brain from the subarachnoid space. Brain Res 1985;326:272–279

KEY WORDS • Shwartzman phenomenon • cerebrovascular disorders • risk factors • blood coagulation • rats
Stroke risk factors prepare rat brainstem tissues for modified local Shwartzman reaction.
J M Hallenbeck, A J Dutka, P M Kochanek, A Siren, G H Pezeshkpour and G Feuerstein

doi: 10.1161/01.STR.19.7.863

Stroke is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1988 American Heart Association, Inc. All rights reserved.
Print ISSN: 0039-2499. Online ISSN: 1524-4628

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://stroke.ahajournals.org/content/19/7/863

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in *Stroke* can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to *Stroke* is online at:
http://stroke.ahajournals.org/subscriptions/