Primary oxalosis is a rare hereditary error of metabolism due to increased endogenous production of oxalate. The disease is characterized by increased urinary oxalate excretion, recurrent nephrocalcinosis, and nephrolithiasis, with associated extrarenal deposition of calcium oxalate.1-3 Deposits can involve many tissues including the heart, and conduction disturbances or tachyarrhythmias are the main clinical manifestations of cardiac involvement.4-10 Primary oxalosis usually manifests in childhood with hematuria or renal stones and progresses to renal insufficiency and death before or during early adulthood. Onset of symptoms in adulthood is very rare.

We report the case of a young man with primary oxalosis who had cardiac deposits of calcium oxalate and in whom a cardioembolic stroke was the initial presentation of cardiac involvement. To our knowledge, no similar cases have been reported.

Case Report

A 34-year-old man was admitted 2 days after the acute onset of right hemiparesis and aphasia. He had a history of renal colic at age 8 years and a duodenal ulcer treated with cimetidine at age 24 years. Three sisters had nephrolithiasis. No risk factors for atherosclerosis were evident.

Cardiac physical examination was normal; systemic blood pressure was 130/80 mm Hg. Electrocardiography showed nonspecific ventricular repolarization abnormalities. Chest roentgenography showed a broad calcific shadow inside the cardiac silhouette. Computed tomography of the brain revealed a left frontotemporal infarction. Left carotid angiography, performed on admission, showed occlusion of a frontal branch of the middle cerebral artery, in the absence of proximal atherosclerotic lesions (Figure 1). Results of carotid echocardiography were normal. Two-dimensional echocardiography (ATL MK 300 IC, phased-array sector scanner) showed heavy diffuse calcifications inside the left ventricle, with involvement of the interventricular septum and the papillary muscles. Moderate thickening of the left ventricular walls was also evident (Figures 2 and 3). Several 24-hour Holter recordings revealed only sporadic supraventricular premature contractions.

Results of laboratory investigations, including parathyroid hormone radioimmunoassay, serum and urinary calcium, phosphate, and uric acid, were normal. Renal function and serial samples of blood pH were normal. The urinary oxalic acid excretion was 64.7 mg/24 hr (normal range, 13–30 mg/24 hr). During hospitalization, the patient had an attack of renal colic on the right side associated with the passing of a calcium oxalate calculus. Echography of the kidneys revealed numerous bilateral calculi with scattered deposits of crystalline material. Thoracic and abdominal computed tomography confirmed the presence of intracardiac calcifications.
FIGURE 1. Left carotid angiograms in anteroposterior (top) and lateral (bottom) views demonstrating occlusion of main branch of middle cerebral artery (arrow).
and bilateral caliceal and intraparenchymal calcifications of the kidneys; a calcification of the colon was also evident. Both echograms and a computed tomogram of the parathyroids were normal. The patient was discharged moderately disabled under treatment with antiplatelet drugs and pyridoxine.

Discussion

The clinical and laboratory features of our patient are characteristic of primary oxalosis. He had recurrent nephrolithiasis and calcium oxalate calculi, as did three siblings. He also had nephrocalcinosis and extrarenal deposition of material presumed to be calcium oxalate in several tissues, including the heart. The presumptive diagnosis of primary oxalosis is also supported by the evidence of high urinary excretion of oxalic acid in the absence of abnormalities of laboratory investigations, including serum calcium, pH, and renal function indexes, or any other cause of secondary hyperoxaluria.

A causal relation between deposits of calcium in the left ventricle and stroke is suggested by clinical and radiographic findings. The clinical features suggesting embolization include the abrupt onset of maximal neurologic deficit in an active young man without atherosclerotic risk factors. The angiographic features that reinforce the diagnosis of cardiogenic embolism are the occlusion of a branch of the middle cerebral artery in the absence of atherosclerotic lesions proximal to the occlusion.

In previous reports, the clinical signs of cardiac involvement secondary to oxalosis were conduction disturbances, probably related to deposits in the conduction system, and tachyarrhythmias. Our patient was studied by several 24-hour Holter recordings and never showed the phenomena of cardiac block or arrhythmias. Moreover, he never had symptoms such as dizziness or syncope suggestive of brady-tachyarrhythmias. An origin of stroke related to cardiac arrhythmias was therefore unlikely in this case. It is conceivable that the mechanism of stroke was the dislodgement of fragments of calcium oxalate from the heart. In fact, calcific cerebral embolization is a well-known complication in

FIGURE 2. Two-dimensional echocardiogram from apical four-chamber view showing heavy calcifications at level of papillary muscles (arrows). RA, right atrium; LA, left atrium; LV, left ventricle.
other calcific cardiac lesions such as mitral anulus calcification and calcific aortic stenosis.

In conclusion, cardiac oxalosis should be taken into account as a rare occult cardiac source of cerebral embolism. The cardiac involvement in patients with primary oxalosis can be totally silent unless arrhythmias manifest. Our observation, therefore, suggests the need to perform two-dimensional echocardiography in every patient with unexplained stroke to detect possible occult cardiac abnormalities.

References

KEY WORDS • calcium oxalate • cardiovascular disorders • echocardiography
Cardioembolic stroke in primary oxalosis with cardiac involvement.
G Di Pasquale, M Ribani, A Andreoli, G A Zampa and G Pinelli

Stroke. 1989;20:1403-1406
doi: 10.1161/01.STR.20.10.1403

Stroke is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1989 American Heart Association, Inc. All rights reserved.
Print ISSN: 0039-2499. Online ISSN: 1524-4628

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://stroke.ahajournals.org/content/20/10/1403

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in *Stroke* can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to *Stroke* is online at:
http://stroke.ahajournals.org/subscriptions/