Case Reports

Progressing Ischemic Stroke in a Homozygote With Variant Antithrombin III

Hidetsugu Ueyama, MD, Yoichiro Hashimoto, MD, Makoto Uchino, MD, Yasuto Sasaki, MD, Eiichiro Uyama, MD, Kenji Okajima, MD, and Shukuro Araki, MD

A 31-year-old woman developed disturbance of consciousness and left hemiparesis. Cerebral computed tomograms showed a low-density area in the right temporal lobe that extended to the right parietal and left frontal lobes as her clinical symptoms worsened. The diagnosis of familial variant of antithrombin III (AT-III) was based on decreased biologic activity and a normal immunologic level of AT-III in this patient and in her family members. Transfusion of normal AT-III concentrate led to a striking clinical recovery. Blood coagulation studies revealed that nine of 13 family members had decreased biologic AT-III activity and that the patient herself was the only homozygote with variant AT-III. We conclude that variant AT-III, especially in a homozygote, seems to be one cause of ischemic stroke in young adults and that simultaneous measurement of both the biologic and immunologic activities of AT-III is necessary to detect it. (Stroke 1989;20:815–818)

Since cardiogenic, hematologic, or inflammatory diseases often predispose to thromboembolic stroke in young adults, both early diagnosis and early therapy of the predisposing disease are important, especially during the acute phase. We examined a young woman with progressing ischemic stroke associated with a familial variant of antithrombin III (AT-III). Cerebral thrombosis associated with AT-III deficiency is extremely rare, although some patients with cerebral venous thrombosis have been reported.

Case Report

A 31-year-old woman had a history of two transient ischemic attacks at ages 17 and 29 years and three episodes of deep-vein thrombosis of the extremities at ages 23 and 29 years. She had been given ticlopidine and pentoxifylline since she was 29 years old. On November 24, 1987, she caught cold, and the next day she developed weakness of her left upper extremity that lasted for 20 minutes. On November 27, she became aware of numbness of her right palm and transient blurred vision of her right eye. She developed headache, nausea, and vomiting and subsequently discontinued her ticlopidine and pentoxifylline. On admission the next day, she was alert and had normal physical findings except for numbness of her right palm and an ulcer of her right leg due to an old case of thrombophlebitis.

Routine laboratory examinations revealed normal values except for iron-deficiency anemia, elevated lactate dehydrogenase concentration, and presence of rheumatoid factor. Tests for coagulation and fibrinolysis showed prominent acceleration of fibrinolysis, such as E fraction of fibrinogen degradation product 2026 (normal 8.1–70) ng/ml, fibrin monomer test 2+, and D-dimer 2000 (normal <200) ng/ml. The biologic activity of AT-III was as low as 42% of control (heparin cofactor activity, incubation time 5 minutes; normal 81–121%), while its immunologic activity was as high as 37.1 (single radial immunodiffusion method; normal 27–33) mg/dl. The dissociation of the biologic and immunologic activities of AT-III in her plasma suggested the presence of a variant form of AT-III. The biologic activity of heparin cofactor-II was also as low as 48.5% (normal 70–150%). Bleeding, prothrombin, and activated partial prothrombin times and fibrinogen, α2-plasmin inhibitor, protein C, protein S, α1-antitrypsin, and α2-macroglobulin concentrations were all normal. Electroencephalography revealed delta rhythmic activity, predominantly in the right temporal area. Chest X-ray film, electrocardiogram, and echocardiogram were all normal.

On December 1 (Day 1), her nausea and headache increased and her level of consciousness gradually fell. That morning, transient generalized convulsions occurred. Neurologically, she was somnolent,
FIGURE 1. Cerebral computed tomograms showed low-density area in right temporal lobe on Day 1 (A). By Day 2, low-density area had extended to right parietal lobe (B). By Day 3, low-density area had appeared in left frontal lobe (C). On Day 54, clear low-density area remained in right parietotemporal and left frontal lobes (D).

By day 54, her mentation, memory, and gait had recovered to normal and no new stroke was found on CT scan (Figure 1D).

Carotid angiography performed on Day 14 revealed branch occlusions of the right middle cerebral artery (Figure 2). There was neither atherosclerotic change of the cerebral arteries nor cerebral venous thrombosis.

On hematologic examination of 13 members of her family, eight (including her parents) had decreased biologic activity and normal immunologic activity of AT-III, while one member showed a decrease in both. Thus, we diagnosed a familial variant of AT-III. The mode of inheritance is suspected to be autosomal dominant. On crossed immuno-electrophoresis and affinity chromatography of their plasma, the patient was found to be a homozygote and the others (including her parents) were found to be heterozygotes.

Discussion

Familial AT-III deficiency is divided into two groups: quantitative AT-III deficiency and dysfunctional AT-III (variant of AT-III). Although familial variant of AT-III is an extremely rare disorder, about 20 families have been reported.
these families, a variant molecule of AT-III, immunologically detectable but biologically abnormal, is apparently produced. Although reduced AT-III activity occasionally produces venous thrombosis, reports of arterial thrombosis are rare.6,7,10,15-17

The clinical features of our case represented a progressing ischemic stroke,18 progression of clinical symptoms and extension of the low-density area for 3 days. At first we speculated a cerebral sinus thrombosis because of her severe headache and nausea, but this was later ruled out due to the absence of empty delta signs on the enhanced CT scan and good venous filling on the carotid angiogram.19 Whether she had developed a cerebral thrombosis or an embolism is a difficult clinical question. We speculated thrombosis because of the gradual onset, spread over several days, and absence of paradoxical embolism.

The most important clinical point of our case is that we successfully diagnosed her as having a familial variant of AT-III during the acute period of her stroke and that concentrated AT-III infusion produced a striking clinical improvement.20,21 Heparin by itself may be ineffective since its action largely depends on the presence of normal AT-III.22

It is still controversial whether reduced AT-III activity is the predisposing factor of stroke.23-26 Only six other cases of cerebral thrombosis associated with familial AT-III deficiency have been reported (Table 1).10,12,15-17 Their common clinical
features were the occurrence in young adults and occlusion of the truncal arteries rather than the perforating arteries. Three of the seven cases (including ours) had a familial variant of AT-III, and two of the three were homozygotes. Since a homozygote, arterial thrombosis is thought to be more frequent. Indeed, among her family, only our patient had recurrent thrombotic episodes.

We conclude that variant AT-III, especially in the case of a homozygote, seems to be a cause of ischemic stroke in young adults. Simultaneous measurement of both biologic and immunologic activities of AT-III is necessary for diagnosis of this disease.

References

TABLE 1. Reports of Ischemic Stroke Associated With Familial Antithrombin III Deficiency

<table>
<thead>
<tr>
<th>Case</th>
<th>Author</th>
<th>Age</th>
<th>Sex</th>
<th>Anticoagulated artery</th>
<th>Antigen activity level</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Nagy et al</td>
<td>39</td>
<td>M</td>
<td>R</td>
<td>MCA</td>
</tr>
<tr>
<td>2</td>
<td>Nagy et al</td>
<td>21</td>
<td>M</td>
<td>L</td>
<td>ICA</td>
</tr>
<tr>
<td>3</td>
<td>Hirasawa et al</td>
<td>51</td>
<td>M</td>
<td>L</td>
<td>MCA</td>
</tr>
<tr>
<td>4*</td>
<td>Horie et al</td>
<td>23</td>
<td>F</td>
<td>R</td>
<td>MCA</td>
</tr>
<tr>
<td>5*</td>
<td>Girolami et al</td>
<td>38</td>
<td>F</td>
<td>R</td>
<td>MCA</td>
</tr>
<tr>
<td>6</td>
<td>Shinmyozu et al</td>
<td>38</td>
<td>M</td>
<td>L</td>
<td>ICA</td>
</tr>
<tr>
<td>7*</td>
<td>Current report</td>
<td>31</td>
<td>F</td>
<td>R</td>
<td>MCA</td>
</tr>
</tbody>
</table>

M, male; F, female; R, right; L, left; MCA, middle cerebral artery; ICA, internal carotid artery.

*Variant of antithrombin III (dysfunctional AT-III).