cyte and granulocyte subpopulations, requires continued study to understand further their role in acute cerebral ischemia.

Michele Mercuri, MD
Laura Santambrogio, MD
Giovanni Ciuffetti, MD
Rita Lombardini, MS
Istituto di Clinica Medica II
University of Perugia
Perugia, Italy

References


To Shunt or Not to Shunt: The Controversy Continues

To the Editor:

We read with interest the report of Drs. Gumerlock and Neuwelt entitled “Carotid endarterectomy: To shunt or not to shunt,” which appeared to indicate that routine bypass shunting during carotid endarterectomy significantly reduces the risk of intraoperative neurologic deficit. We recently completed a study of 103 patients undergoing carotid endarterectomy, who were monitored with a two-channel computerized electroencephalographic/compressed spectral array analysis. Their results are in keeping with the published literature. Since it remains impossible to determine accurately when to use a shunt based on variable monitoring criteria, the only currently assessable option is in fact the decision on whether to shunt. As we have shown in our randomized prospective study using this decision as the only criterion, there are significant benefits to the use of a shunt. We certainly agree with Drs. Tempelhoff and Modica that their results are difficult to interpret and that the answer to the criteria question remains elusive.

Correction: Dr. Kim Wayson’s name did not appear in our resident acknowledgments and we would like to recognize his invaluable help with the study.

Edward A. Neuwelt, MD
Division of Neurosurgery
Department of Biochemistry
Mary Kay Gumerlock, MD
Division of Neurosurgery
University of Missouri-Columbia
Columbia, Missouri

References


Role of Dopamine in Ischemic Neuronal Damage

To the Editor:

Kawano et al1 have recently described a large increase in extracellular dopamine release during ischemia in the striatum of spontaneously hypertensive stroke-resistant rats. The authors hypothesize that the excessive leakage of dopamine may be a causal factor in the development of postischemic neuronal damage. The possibility that dopaminergic neurotransmission might contribute to the vulnerability of the stratum during ischemia has been clearly established by some of our recent sequential studies. Using the microdialysis technique in rats subjected to 20 minutes of four-vessel occlusion, we documented an acute and massive increase of dopamine release into the striatal extracellular space.2 Dopamine deafferentiation, by prior unilateral sub-
Role of dopamine in ischemic neuronal damage.
M Y Globus

Stroke. 1989;20:827-828
doi: 10.1161/01.STR.20.6.827.b
Stroke is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1989 American Heart Association, Inc. All rights reserved.
Print ISSN: 0039-2499. Online ISSN: 1524-4628

The online version of this article, along with updated information and services, is located on the
World Wide Web at:
http://stroke.ahajournals.org/content/20/6/827.2.citation