Therapeutic Window of CA1 Neuronal Damage Defined by an Ultrashort-Acting Barbiturate After Brain Ischemia in Gerbils

Toshihiko Kuroiwa, MD, Petra Bonnekoh, MD, and Konstantin-Alexander Hossmann, MD, PhD

Previous therapeutic studies on the prevention of selective vulnerability of neurons in the hippocampus have suggested that the critical period for induction of delayed neuronal injury occurs early during recirculation. To determine the onset and duration of this period, an ultrashort-acting barbiturate (methohexital) was infused into the left carotid artery of 47 gerbils after various times of recirculation following 10 minutes of bilateral forebrain ischemia. Neuronal density in the left CA1 sector was determined 7 days later by counting the number of surviving neurons per millimeter of pyramidal cell layer. In 16 saline-treated gerbils, <10% of the CA1 neurons survived the 10 minutes of ischemia. Postischemic carotid infusion of methohexital improved neuronal survival, the degree of improvement depending on the timing and duration of the methohexital infusion. When carried out during the initial 40 minutes of recirculation, methohexital infusion for 10 minutes increased the number of surviving neurons to approximately 60% of that in five sham-operated control gerbils. This increase was significant for infusions carried out between the 10th and 20th minutes (n=6, p<0.05) and between the 30th and 40th minutes (n=6, p<0.05) of recirculation. Methohexital infusion for 20 minutes increased neuronal survival to 95% and 73% of that in the controls when carried out between the 0th and 20th minutes (n=5, p<0.005) and between the 20th and 40th minutes (n=5, p<0.005) of recirculation, respectively. Protection was nonsignificant for 10- or 20-minute methohexital infusions carried out after the 40th minute of recirculation. Our results demonstrate that the pathologic processes leading to delayed neuronal injury in the CA1 sector are induced during the initial 40 minutes of recirculation and that barbiturates are able to reverse these processes only if given during this period.

(Stroke 1990;21:1489-1493)

Hippocampal CA1 neuronal injury after transient forebrain ischemia can be prevented by postischemic application of various drugs, indicating that the processes leading to the induction of delayed neuronal injury become irreversible after and not during ischemia. The critical period during which these processes are induced seems to occur soon after the beginning of recirculation. Kirino et al showed that treatment with pentobarbital prevents delayed neuronal injury in the hippocampus when started immediately after the end of ischemia but that the drug treatment is no longer significantly protective when started 1 hour after the beginning of recirculation. In a previous experiment from our laboratory CA1 neurons were protected by 1% halothane when gerbils were anesthetized during the initial 45 minutes of recirculation, but the anesthetic had no effect when inhalation was discontinued after 15 minutes of recirculation or when it was started >100 minutes after the end of ischemia. These observations suggest that the period during which induction of delayed neuronal injury becomes irreversible lies within the initial 1 hour of recirculation and that it requires a certain time for completion. We carried out the following experiment to determine the precise time course of these processes by using differently timed infusions of an ultrashort-acting barbiturate, methohexital, to prevent postischemic CA1 neuronal injury after global ischemia in gerbils.

Materials and Methods

We used 82 adult Mongolian gerbils (Meriones unguiculatus) of either sex weighing 50–80 g. Anesthesia was induced with 3% halothane inhalation and then maintained with 1% halothane in 70% nitrogen and 30% oxygen. Rectal temperature was monitored...
throughout the experiment and kept close to 37.5°C with a feedback-controlled heating system. The left external carotid artery was exposed through a midline cervical incision using an operating microscope. A 27-gauge needle connected to an infusion pump and a pressure transducer was inserted with a micro-manipulator (Precidor Type 5003, Infors AG, Bottmingen, Switzerland) into the left lingual artery and advanced retrogradely to place the needle tip close to the carotid bifurcation. Clotting of the needle was prevented by the continuous infusion of 2–5 µl/min saline except during ischemia. Ischemia was induced in 77 gerbils by occluding both common carotid arteries with Biemer clips (FD 562, Aesculap Werk AG, Tuttingen, FRG) for 10 minutes. In a previous study bilateral common carotid artery occlusion for 10 minutes did not produce significant CA1 neuronal injury when the back pressure measured distal to the occlusion exceeded 15 mm Hg. To exclude gerbils with partial ischemia, we rejected animals in which back pressure in the carotid artery was >10 mm Hg. After release of the vascular occlusion, 0.04 mg/kg/min methohexital (30 µl/min) or 30 µl/min saline was infused into the left carotid artery for 10 minutes beginning after 0, 10, 20, 30, 40, or 60 minutes of recirculation or for 20 minutes beginning after 0, 20, or 40 minutes of recirculation. Each group consisted of five or six methohexital-treated and one or two saline-treated gerbils. After 70 minutes of recirculation the needle was removed, the skin was sutured, and halothane anesthesia was discontinued. The five remaining gerbils were used for histologic controls; they were sham-operated as described above (their common carotid arteries were not occluded) and their left carotid arteries were infused with saline.

After 7 days of recirculation the gerbils were anesthetized with 100 mg/kg pentobarbital and decapitated. The brains were removed and fixed by immersion for 1 day in 4% buffered formalin and for 4 days in 10% buffered formalin. Coronal sections 5 µm thick were prepared at a level 1.4–1.7 mm posterior to the bregma and stained with Luxol fast blue and cresyl violet. Intact neurons in the left hippocampal CA1 sector were counted, and neuronal density was expressed as cells per millimeter of stratum pyramidale.

Statistical evaluation was performed using analysis of variance and Student’s t test with Bonferroni corrections for multiple comparisons. Data are quoted as mean ± standard deviation.

Results

Three of the 77 gerbils subjected to 10 minutes of bilateral common carotid artery occlusion (two with 10 minutes of methohexital infusion beginning after 20 and 60 minutes of recirculation and one with 10 minutes of saline infusion beginning after 60 minutes of recirculation) recovered initially but then gradually became hypokinetic and died after 1, 2, and 5 days of recirculation, respectively; results from these three gerbils were excluded from analysis. The other 74 gerbils survived for 7 days without showing any gross neurologic symptoms except for transient post-ischemic motor hyperactivity. All five sham-operated control gerbils survived for 7 days.

In the remaining 79 gerbils the mean carotid arterial blood pressure at baseline was approximately 75 mm Hg; among the 74 subjected to ischemia, back pressure decreased to <10 mm Hg after carotid artery occlusion in all but 11 gerbils, which were also excluded (see “Materials and Methods”). Upon recirculation, the mean carotid arterial blood pressure promptly returned to the baseline level. In some gerbils, blood pressure subsequently decreased to approximately 70% of baseline for a few minutes before returning to the baseline level. After 60 minutes of recirculation carotid arterial blood pressure ranged between 55 and 86 mm Hg and did not differ significantly from the baseline level; blood pressure also did not differ significantly among groups. Mean rectal temperature at baseline was close to 37.5°C in all groups; temperature remained stable during the experiment. Measurements of carotid arterial blood pressure and rectal temperature are shown in Table 1.

Neuronal density in the stratum pyramidale of the hippocampal CA1 sector was approximately 200 cells/mm in the sham-operated control group (Figure 1). The 16 gerbils infused with saline at various times after 10 minutes of ischemia were lumped into one untreated group, in which neuronal density was approximately 30 cells/mm (Figure 2, a and d), or 16% of control (Figure 1).

In the groups with 10 minutes of methohexital infusion beginning during the initial 40 minutes of recirculation, neuronal density increased to >100 cells/mm, or up to 64% of control (Figure 1). This increase was significant (p<0.05) for the 10–20 and 30–40 minutes of recirculation groups. Neuronal density decreased to <30% of control for the 40–50 and 60–70 minutes of recirculation groups.

In the groups with 20 minutes of methohexital infusion, neuronal density was 95% of control for the 0–20 minutes of recirculation group (Figure 2, b and e), and 73% of control for the 20–40 minutes of recirculation group (Figure 1); both values were significantly greater than for the untreated group (p<0.005). Neuronal density for the 0–20 minutes of recirculation group was also significantly greater than that for the 0–10 and the 10–20 minutes of recirculation groups. Methohexital infusion for 20 minutes beginning after 40 minutes of recirculation did not consistently result in neuroprotection; neuronal density was only 45% of control (Figure 2, c and f), which did not differ significantly from that for the untreated group (Figure 1).

Discussion

Pharmacologic studies of the selective vulnerability of neurons in the hippocampus after brief periods of global forebrain ischemia in gerbils suffer from a
TABLE 1. Physiologic Variables Before and After Sham Operation or Bilateral Common Carotid Artery Occlusion in Gerbils

<table>
<thead>
<tr>
<th>Variable</th>
<th>Sham-operated control (n=5)</th>
<th>Saline infusion (n=16)</th>
<th>Group</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Methohexital infusion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0 min (n=5)</td>
</tr>
<tr>
<td>Carotid arterial blood pressure</td>
<td>Baseline 69.7±12.3</td>
<td>75.1±9.3</td>
<td>75.4±5.1</td>
</tr>
<tr>
<td></td>
<td>During ischemia 7.1±3.2</td>
<td>6.8±3.4</td>
<td>3.3±4.1</td>
</tr>
<tr>
<td></td>
<td>During recirculation 5 min</td>
<td>70.0±10.0</td>
<td>73.7±9.9</td>
</tr>
<tr>
<td></td>
<td>60 min 70.0±10.0</td>
<td>76.1±5.3</td>
<td>81.0±6.6</td>
</tr>
<tr>
<td>Rectal temperature (°C)</td>
<td>Baseline 37.5±0.6</td>
<td>37.6±0.3</td>
<td>37.5±0.4</td>
</tr>
<tr>
<td></td>
<td>During ischemia 37.7±0.3</td>
<td>37.3±0.3</td>
<td>37.7±0.4</td>
</tr>
<tr>
<td></td>
<td>During recirculation 5 min</td>
<td>37.6±0.2</td>
<td>37.7±0.2</td>
</tr>
<tr>
<td></td>
<td>60 min 37.6±0.3</td>
<td>37.7±0.2</td>
<td>37.3±0.2</td>
</tr>
</tbody>
</table>

Time during recirculation at which methohexital infusion began. Values are mean±SD.

Kuroiwa et al. Postischemic Barbiturate Treatment 1991

...
Post-ischemic infusion time of methohexital (0.04 mg/kg/min) indicating that reactive oxygen radical species are generated during this interval. In view of the fact that barbiturates are free radical scavengers and that the therapeutic effect was most pronounced during this interval, such a mechanism could be involved. However, interference with other reperfusion-associated changes (such as increased calcium fluxes and the release of neurotransmitters) cannot be excluded and should also be considered.

A puzzling question that remains to be solved is the long interval between the early appearance of barbiturate-sensitive pathophysiologic processes and the late manifestation of CA1 neuronal injury. During the maturation of the injury, certain metabolic disturbances (such as dysregulations of protein and polyamine metabolism) have been described that apparently are of pathogenetic importance for the development of delayed neuronal death. Our demonstration of an amazingly narrow postischemic window during which short-acting barbiturates are protective suggests that the onset of these disturbances must be linked to pathophysiologic events that are established during this short interval. The elucidation of this relation will be of fundamental importance for the understanding of selective vulnerability and therefore warrants further investigation.

Figure 1. Bar graph of mean±SD neuronal density (surviving neurons per millimeter of CA1 sector of dorsal hippocampus) in gerbils. Cross-hatched bars: control, halothane-anesthetized sham-operated group; untreated, 10 minutes of ischemia without postischemic methohexital infusion. Time of methohexital infusion during recirculation: solid bars, 20 minutes of methohexital infusion; shaded bars, 10 minutes of methohexital infusion. Methohexital infusion during initial 40 minutes of recirculation significantly increased neuronal density (prevented CA1 injury). **p<0.05, 0.005, respectively, different from untreated by analysis of variance.

Figure 2. Light micrographs of dorsal hippocampus in gerbils. a, d: 10 minutes of ischemia without postischemic treatment with methohexital. b, e: 10 minutes of ischemia with 20 minutes of postischemic methohexital infusion beginning at 0th minute of recirculation. Note nearly complete preservation of CA1 neurons. c, f: 10 minutes of ischemia with 20 minutes of postischemic methohexital infusion beginning at 40th minute of recirculation. CA1 neurons were not protected by this treatment. Luxol fast blue and cresyl violet stain, calibration bars=500 μm for a, b, and c; 50 μm for d, e, and f.
Acknowledgments

We thank Mrs. E. Müllerwitsch and Mrs. S. Reichelt for providing skillful assistance with the histological preparations, Mrs. I. Mühlhöver and Mr. B. Huth for the artwork, and Mrs. M. Eckel and Mrs. M. Hahmann for the preparation of the manuscript.

References

12. Levy DE, Brierley JB: Communications between vertebrobasilar and carotid arterial circulations in the gerbil. Exp Neurol 1974;45:503-508
23. Kirino T: Delayed neuronal death in the gerbil hippocampus following ischemia. Brain Res 1982;239:57-69

KEY WORDS • barbiturates • hippocampus • gerbils
Therapeutic window of CA1 neuronal damage defined by an ultrashort-acting barbiturate after brain ischemia in gerbils.
T Kuroiwa, P Bonnekoh and K A Hossmann

Stroke. 1990;21:1489-1493
doi: 10.1161/01.STR.21.10.1489

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://stroke.ahajournals.org/content/21/10/1489

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Stroke can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Stroke is online at:
http://stroke.ahajournals.org//subscriptions/