Embolic Stroke After Smoking
"Crack" Cocaine

George W. Petty, MD, John C.M. Brust, MD,
Thomas K. Tatemichi, MD, and Mark L. Barr, MD

A 39-year-old woman had an embolic upper division middle cerebral artery branch occlusion 3 hours after smoking the free base of cocaine ("crack"). Radionuclide ventriculography demonstrated cardiomyopathy, and echocardiography documented a left atrial thrombus. This case demonstrates that embolism is one mechanism of ischemic stroke after cocaine use, and that cardiomyopathy, possibly cocaine induced, may be the source of embolus. A cardiac source of embolus should be sought in patients with cocaine-associated cerebral infarction. (Stroke 1990;21:1632–1635)

Accompanying the current American cocaine epidemic are increasingly frequent reports of myocardial infarction, myocarditis, cerebral infarction, cerebral hemorrhage, and subarachnoid hemorrhage in young adult users. Proposal, but as yet undocumented, mechanisms of cocaine-related cerebral infarction include increased platelet aggregation and cerebral vasospasm due to increased sympathetic activity and acute elevation of blood pressure. We recently encountered a patient who had a cardioembolic stroke after smoking the free base of cocaine ("crack"). Evaluation demonstrated a left atrial thrombus in the setting of a cardiomyopathy that may have been cocaine induced.

Case Report

A 39-year-old left-handed black woman was admitted to the Neurological Institute of New York for acute left hemiparesis. She had no history of hypertension, hypercholesterolemia, heart disease, alcohol abuse, intravenous drug use, syphilis, or collagen vascular disease. She had smoked one pack of cigarettes daily for 5 years before admission and had taken oral contraceptives in the past. Her father died from stroke of unknown mechanism at age 37, her mother had a myocardial infarction at age 51, and there was a family history of polycystic kidney disease. The patient had smoked crack cocaine almost daily for the previous 2 years. During the week before admission, she had a brief episode of numbness in the right leg, and another brief episode of slurred speech, tingling in the right face and arm, and imbalance.

The day before admission, she smoked crack at 6 PM. Three hours later, she briefly experienced numbness and tingling on the right side of her face. Thirty minutes later, she noticed left face, arm, and leg weakness plus slurred speech. These symptoms persisted, and the following morning she came to the hospital. Blood pressure was 140/80 mm Hg, pulse was 86 beats/min and regular, respiratory rate was 24 per minute, and temperature was normal. She had scattered rales and ronchi and an S3 heart sound. There was no pedal edema. She was alert and oriented with dysarthria, but there was no language abnormality, hemineglect, anosognosia, or constructional disturbance. Visual fields and eye movements were normal. Her tongue deviated to the left, and her lower face and arm were nearly paralyzed, but her leg had normal strength at the ankle and was only slightly weak at the hip. Sensation to light touch, pinprick, and vibration were decreased on the left side of the body; proprioception was impaired in the left hand but not in the left foot. There was an extensor response in the left toe.

A computed tomography (CT) scan of the brain was normal on admission. Duplex Doppler examination demonstrated no abnormality of either carotid bifurcation. Transcranial Doppler demonstrated no evidence of middle cerebral artery stem occlusion or stenosis. Cerebrospinal fluid was acellular with normal opening pressure, protein, and glucose, and negative routine cultures and cryptococcal antigen. Electrocardiogram demonstrated sinus rhythm with occasional premature ventricular contractions, an
intraventricular conduction defect, left atrial enlargement, and inverted T waves in leads II, III, aVF, and V2 through V6. A 24-hour Holter monitor showed sinus rhythm with many repetitive ventricular premature complexes. Echocardiogram demonstrated mild left ventricular hypertrophy, a nondilated left ventricle with marked global hypokinesis and ejection fraction of 26% (reduced), a mildly dilated left atrium and a moderately dilated left atrial appendage with a mobile 1.3x1.5 cm mass felt to represent a thrombus, mild-to-moderate mitral regurgitation, and an enlarged right atrium and right ventricle. A chest radiograph demonstrated cardiomegaly and pulmonary vascular congestion. Cocaine metabolites were detected in the urine. The following blood laboratory examinations were normal: glucose, electrolytes, cholesterol, erythrocyte sedimentation rate, complete blood count, platelet count, prothrombin time, partial thromboplastin time, blood cultures, lupus anticoagulant, antithrombin III activity, protein C activity, free protein S activity, serum protein immunofixation electrophoresis, antinuclear antibody, syphilis serology, hepatitis B antigen, cryoglobulins, angiotensin converting enzyme, thyroid function tests, screening test for sickle cells, CPK-MB fraction, lactic dehydrogenase isoenzymes, and T-cell ratio.

She was anticoagulated with heparin and then warfarin. Her left hemiparesis and dysarthria slowly improved. A follow-up CT scan done 6 days after admission demonstrated a right opercular and lower rolandic infarction (Figure 1). On the 15th hospital day she had a 15-minute episode of right facial weakness, which completely resolved. Prothrombin time was 13.8 seconds (control, 11.8 seconds). Repeat CT scan with contrast injection did not demonstrate a new infarction or hemorrhage. Treatment with digoxin, diuretics, and angiotensin-converting enzyme inhibitors resulted in improvement in her cardiac function. Repeat echocardiogram 3 weeks after admission demonstrated marked improvement in left ventricular function with mild global hypokinesis, ejection fraction of 45% (mildly decreased), and only trace mitral regurgitation. The previously documented thrombus in the left atrial appendage was not detected. A radionuclide ventriculogram demonstrated an ejection fraction of 40% (mildly decreased), increased left atrial size, normal left ventricular size, and inferolateral posterior hypokinesis. She was discharged to a drug rehabilitation center.

Discussion

This patient had an embolic right middle cerebral artery upper division branch occlusion after smok-
ing crack cocaine. The embolic source was a cardio-
myopathy with thrombus in the left atrial append-
age. To our knowledge, her stroke represents the
only report of embolic cerebral infarction occurring
after cocaine use. This case underscores the impor-
tance of searching for a source of embolus in this
setting. Although angiography was not performed
to exclude intracranial stenosis as a possible mech-
anism of her stroke, her young age, the clinical
profile of the event, the topography of the stroke as
demonstrated by CT, the normal middle cerebral
artery transcranial Doppler findings, and the docu-
mented cardiac source of embolus make embolic
middle cerebral artery upper division branch occlu-
sion the most likely mechanism for her stroke. Of
note is that her stroke was preceded by two trans-
sient ischemic attacks during the week before ad-
mission, and that she experienced one other tran-
sient ischemic attack 2 weeks into her hospital
course. Although embolism is not typically pre-
ceded by transient ischemic attacks, fully 13% of
embolic cerebral infarctions in the Stroke Data
Bank of the National Institute of Neurological and
Communicative Disorders and Stroke were pre-
ceded by transient ischemia.8 Wojak and Flamm9
reported a 51-year-old patient with atherosclerotic
heart disease hospitalized for cerebral hemorrhage
after cocaine use who, a week after admission,
developed a cerebral infarction in the setting of an
acute myocardial infarction and atrial fibrillation.
However, the presumed right middle cerebral ar-
tery occlusion in their patient was temporally re-
 mote (1 week) from the episode of cocaine use, and
it was unclear if the infarct was of cardiac origin. In
contrast, our patient’s cerebral infarction was tem-
porally related (3 hours) to the cocaine use, and she
had echocardiographically documented impaired
myocardial function and a left atrial thrombus. The
3-hour delay between her last cocaine use and the
onset of her stroke does not exclude a direct drug
effect. The elimination half-life of cocaine is re-
ported to be 30–90 minutes,10 and it has been
suggested that it may be a two-compartment drug
with significant levels persisting in the body for 2
weeks or more.11 Moreover, benzoylgeonine, a
pharmacologically active metabolic product of co-
caine, usually is detectable in urine for several days,
and even longer in chronic heavy users.10,12 Co-
caine-induced arrhythmia may have dislodged an
embolus from the atrium just before the time of
stroke onset. We cannot exclude the possibility that
vasospasm or platelet aggregation, two postulated
mechanisms for occlusive stroke in cocaine abuse,1,2
may have played a role in her stroke, but we have no
objective evidence to support this notion.

Because our patient did not undergo cardiac
catheterization or biopsy, the mechanism of her
cardiomyopathy is uncertain. She had smoked cig-
arettes for 5 years and had a family history of stroke
and myocardial infarction, but her young age and
the absence of historical and objective evidence of
myocardial infarction make it unlikely that athero-
sclerotic heart disease was the etiology of her
cardiomyopathy. Although we cannot exclude the
possibility that she had a so-called “cryptogenic
cardiomyopathy,” we propose that her cardiomyop-
athy may have been the result of chronic cocaine
abuse. Cocaine can cause myocardial injury by
mechanisms other than infarction. Tazelaar et al4
have reported a significantly higher incidence of
contraction band necrosis in hearts of patients with
cocaine-associated death compared to patients dy-
ing of sedative-hypnotic overdose. They acknowl-
edged that contraction band necrosis is a nonspe-
cific finding, possibly reflecting calcium- and
catecholamine-related metabolic abnormalities
within the heart, but suggested that this abnormal-
ity might provide an “anatomic substrate” for ar-
rhythmia.4 In another autopsy study, Virmani et al3
found myocarditis (mononuclear infiltrate) in 20% of
patients with cocaine-associated death compared to
3.7% of patients dying suddenly of trauma. They
proposed that cocaine might cause myocarditis via
microvascular injury, in some patients perhaps su-
perimposed on underlying atherosclerosis. A num-
ber of clinical case reports13–18 and anatomical
studies19,20 support the notion that cocaine may
indeed cause symptomatic dilated cardiomyopathy.
If chronic cocaine use does cause cardiomyopathy,
our patient certainly would be at risk for such a
complication by virtue of her daily use of cocaine
for 2 years before her stroke.

Whatever the mechanism of her cardiomyopathy,
our patient illustrates that embolus is one mechanism
of cocaine-associated cerebral infarction. Patients
who have ischemic stroke after using cocaine should
be evaluated for a cardiac source of embolus, be-
cause treatment with anticoagulants would be con-
"sidered if one is found.

References
779–783
2. Cregler LL, Mark H: Medical complications of cocaine abuse.
N Eng J Med 1986;315:1495–1500
3. Virmani R, Robinowitz M, Smialek JE, Smyth DF: Cardiovas-
cular effects of cocaine: An autopsy study of 40 patients. Am
Heart J 1988;115:1068–1076
4. Tazelaar HD, Karch SB, Stephens BG, Bilingham ME: Cocaine
and the heart. Human Pathol 1987;18:195–199
5. Jacobs IG, Roesler MH, Kelly JK, Klein MA, King GA: Cocaine
170:223–227
6. Nolte KB, Gelman BB: Intercerebral hemorrhage associated
7. Levine SR, Brust JCM, Futrell N, Ho K-L, Blake D, Milikan
CH, Brass LM, Fayad P, Schultz LR, Selwa JF, Welch KMA:
Cerebrovascular complications of the use of the “crack” form
8. Foulkes MA, Wolf PA, Price TR, Mohr JP, Hier DB: The
Stroke Data Bank: Design, methods, and baseline character-
9. Wojak JC, Flamm EM: Intracranial hemorrhage and cocaine

KEY WORDS • cerebrovascular disorders • cocaine • embolism
Embolic stroke after smoking "crack" cocaine.
G W Petty, J C Brust, T K Tatemichi and M L Barr

Stroke. 1990;21:1632-1635
doi: 10.1161/01.STR.21.11.1632

The online version of this article, along with updated information and services, is located on the
World Wide Web at:
http://stroke.ahajournals.org/content/21/11/1632

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Stroke can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Stroke is online at:
http://stroke.ahajournals.org/subscriptions/