Short Communications

Autosomal Dominant Syndrome With Strokelike Episodes and Leukoencephalopathy

Elizabeth Tournier-Lasserve, MD; Marie-Thérèse Iba-Zizen, MD; Norma Romero, MD; and Marie-Germaine Bousser, MD

Background and Purpose: We conducted a prospective survey of a family presenting a new syndrome characterized mainly by recurrent strokelike episodes and neuroimaging evidence of leukoencephalopathy.

Summary of Report: Forty-five members of a single family were studied clinically and with magnetic resonance imaging. Nine had strokelike episodes, including transient ischemic attacks, and minor or major strokes starting between the fourth and sixth decades, with neuroimaging evidence of small, deep infarcts and a widespread white matter disorder. Other symptoms included migraine (three), dementia (two), epilepsy (one), and hearing loss (one). In some patients, we found various immunologic anomalies and muscular lipidosis without ragged-red fibers. Eight other family members were clinically normal, but had identical neuroimaging signs of leukoencephalopathy. No abnormality was detected in the 28 other members of the family examined. Extensive investigations failed to reveal any known cause of cerebral ischemia.

Conclusions: There appears to be a new syndrome in this family that is characterized by recurrent subcortical strokelike episodes, leukoencephalopathy, immunologic anomalies, muscular lipidosis, and an autosomal dominant pattern of transmission. (Stroke 1991;22:1297–1302)

Stroke in association with the finding of leukoencephalopathy on neuroimaging has been reported in a number of nonfamilial conditions, such as Binswanger's disease, and in some rare genetic and metabolic disorders, such as metabolic encephalopathy, lactic acidosis, and stroke (MELAS) and homocystinuria.1 2 We report here an autosomal dominant syndrome observed in a French family that is characterized mainly by subcortical strokelike episodes starting in midadulthood and by neuroimaging evidence of a widespread white matter disorder. The condition is associated with muscular lipidosis without ragged-red fibers and with various immunologic abnormalities of uncertain significance.

Case Reports

Forty-five members of a family originating from the Loire-Atlantique region of France underwent extensive clinical, biological, and radiological investigations. Figure 1 shows the pedigree of this family. The 45 subjects examined belonged to generations III (18 subjects) and IV (27 subjects). All gave informed consent. Nine (six males, three females) had suffered recurrent strokelike episodes (focal cerebral deficits of sudden onset with varying degrees of recovery), which had started between 30 and 60 years of age (Table 1). These led to pseudobulbar palsy in three and dementia in two. The second most frequent symptom, present in three patients, was episodic headache suggestive of migraine. One patient developed significant psychiatric disturbance and another had sensorineural deafness. No optic nerve, spinal cord, peripheral nerve, muscle, or other organ involvement was detected. There was no ophthalmoplegia, proximal weakness, ataxia, growth failure, or symptoms during childhood. Table 1 summarizes the clinical presentation of these nine patients; only one case will be fully reported (family member III-5). Four members of generations I and II had suffered of recurrent strokes.

A 50-year-old previously healthy male was first examined in 1976 after the sudden onset of expressive dysphasia with buccofacial apraxia, from which he recovered completely within 2 months. Two other episodes of sudden onset occurred: one in 1977, again with dysphasia, and the other in 1983, with left-sided numbness involving the cheek, tongue, and first three fingers. From 1977 on the patient complained of recurrent
attacks of severe headache with nausea, photophobia, and phonophobia. He gradually developed a typical pseudobulbar palsy, and by 1986 he was severely dysarthric and almost unable to walk. He was apathetic, depressed, and moderately demented (Mini-Mental State Examination [MMSE] score of 23/30). In view of his steady deterioration, the absence of apparent cause (infra), and the discovery of a monoclonal gammopathy without evidence of plasma cell malignancy, he underwent plasmapheresis in October 1986. After five sessions he began to improve, and after 10 sessions he was able to walk long distances without assistance and his speech had improved. The MMSE score was 27/30, and the Barthel Activities of Daily Living index had risen from 65 to 85. Since then, plasmapheresis has been performed every 1–2 months. The patient’s clinical condition has remained stable, without any new further episodes. Blood pressure (130/80 mm Hg) and general examination have been normal at all times.

Methods
Computed tomography (CT) of the brain (CE 12 000 from CGR or Elscint 2400) was performed in the nine clinically affected subjects, using the orbitomeatal plane as reference. Brain magnetic resonance imaging (MRI) studies were performed in all 45 subjects, the first 32 at 0.15 or 0.5 T (Magniscan GE CGR) and the remainder at 1.5 T (Sigma GE-CGR). T1- and T2-weighted sequences were used in all subjects, with contiguous slices (5–9 mm thick), in sagittal and axial planes using the neuro-ocular plane as reference. Computed tomography showed small areas of well-delineated hypodensity, without contrast enhancement, scattered throughout the basal ganglia and adjacent white matter, with a preponderance for the external capsule. Furthermore, diffuse and confluent areas of hypodensity were observed in the hemispheric white matter (leukoaraiosis). These two types of lesions were confirmed by MRI which showed, first, small, deep, and well-delineated areas of abnormal signal (decreased on T1-weighted imaging and increased on T2-weighted imaging), and secondly, on T2-weighted imaging, extensive areas of hypersignal in the white matter of the cerebral hemispheres. The small, deep, well-delineated lesions were present in all nine patients and were strikingly similar in all of them, whereas increased white matter signal, present in eight patients, was also found in eight totally asymptomatic subjects, to a variable extent (Figure 2).

The following investigations were performed in all affected individuals, except where otherwise stated, and were normal: duplex scanning of cervical arteries, four-vessel angiography (performed in four patients), electrocardiography, two-dimensional echocardiography, Holter monitoring, chest x-ray, nerve-conduction velocities (performed in three patients), lipid metabolism [total, LDL, and HDL cholesterol; triglycerides; apolipoprotein A-I; Lp(a)], detailed coagulation and hemostasis studies, serum creatine kinase enzymes, hexosaminidases A and B, arylsulfatases A and B, and α-galactosidase. Free and total serum carnitine levels, blood lactates, and pyruvates at rest and after exercise were normal except in patient III-23, where, twice,
functions performed. 4 Whereas muscle biopsy was
two patients (III-5, 19), mitochondria were isolated
from 1 g fresh muscle and the analysis of their
histochemical and electron microscopic studies. 3 In
four patients (IV-4,5,19, IV-22) and one asymptom-
atic subject (111-21) with leukoencephalopathy for
brother, III-5, had a benign monoclonal gammopa-
clue in two (111-17, 21).

Biopsies were obtained from the left deltoid of
each patient. The analysis using monoclonal antibodies directed toward CD3, CD4, CD8, T-cell antigens, and B-cell and natural killer cell antigens) were performed because patient III-6 had died of myeloma (IgG-κ) and his
brother, III-5, had a benign monoclonal gammopathy.
Antibodies were detected in the serum of some
patients: antinuclear antibodies (immunofluores-
ting signals on T2-weighted imaging. The disease
is transmitted either paternally or maternally and
affects approximately 50% of offspring. The offspring
of unaffected parents are also unaffected. This pat-
tern is consistent with an autosomal dominant pat-
tern of inheritance.

All clinically affected subjects presented with episo-
des of focal brain deficits of sudden onset. The

| Table 1. Clinical Presentation of the Nine Patients in Generations III and IV |
|-----------------|-----------------|-----------------|
| Propositus | Vascular risk factors | Main clinical features |
| (age of onset) | | |
| | Myocardial infarction | Pseudobulbar palsy and subcortical dementia. |
| III-17 (54) | None | Three episodes of sudden onset with good recovery in 1 week to 1 month (1983, pure left hemiplegia; 1984, dysphasia; 1985, left hemiplegia and loss of balance). |
| III-23 (47) | None | Multiple 5- to 15-minute episodes of paresthesia in left hand and face followed by left-sided headache lasting <1 hour (migraine with aura or transient ischemic attacks). |
| III-24 (42) | None | Multiple transient episodes (30-60 minutes) of two types: left arm and face weakness and paresthesia, and bilateral blurring of vision without headache. |
| IV-2 (39) | Cigarette smoker | One sudden episode of dysarthria and left-sided facial weakness lasting 1 month. |
| IV-21 (34) | None | One sudden episode of expressive dysphasia lasting 5 days. |
| IV-22 (33) | Cigarette smoker | Multiple episodes (3-24 hours) of dysphasia with or without visual field defects. One sudden episode of pure hemiplegia lasting 1 month. Migraine with and without aura. Bilateral sensorineural hearing loss. |

Lactate levels at rest were observed to be >2 mM/l
(i.e., 3 mM/l and 3.2 mM/l). Total plasma homocysteine
level was measured in three cases and found to be
increased in one (patient IV-22, 21 μmol/l).

The cerebrospinal fluid was analyzed in five pa-
tients: it was normal in two (III-17, 19), showed an
increase in protein (0.94 g/l) with an IgG monoclonal
peak in one (III-5), a mild pleocytosis (8 cells/mm³)
in one (IV-2), and oligoclonal bands in two (IV-2, 22).

Extensive immunologic investigations (screening
for antibodies to DNA, nuclear soluble proteins, mitochondria, striated muscle, smooth muscle, thy-
roid, and skin; blood lymphocyte subpopulation anal-
ysis using monoclonal antibodies directed toward
CD3, CD4, CD8, T-cell antigens, and B-cell and
natural killer cell antigens) were performed because
patient III-6 had died of myeloma (IgG-κ) and his
brother, III-5, had a benign monoclonal gammopathy.
Antibodies were detected in the serum of some
patients: antinuclear antibodies (immunofluores-
ting signals on T2-weighted imaging. The disease
is transmitted either paternally or maternally and
affects approximately 50% of offspring. The offspring
of unaffected parents are also unaffected. This pat-
tern is consistent with an autosomal dominant pat-
tern of inheritance.

All clinically affected subjects presented with episo-
des of focal brain deficits of sudden onset. The

Discussion
The genealogical study of this family shows that six
males and three females were clinically affected and
that five males and three females were clinically
asymptomatic, but had MRI white matter hyperin-
tensity signals on T2-weighted imaging. The disease
is transmitted either paternally or maternally and
affects approximately 50% of offspring. The offspring
of unaffected parents are also unaffected. This pat-
tern is consistent with an autosomal dominant pat-
tern of inheritance.

All clinically affected subjects presented with episo-
des of focal brain deficits of sudden onset. The
The time course was highly variable, being that of complete resolution within a few minutes to minimal recovery with various degrees of sequelae. In all but two patients recurrences occurred over the years, leading to pseudobulbar palsy in three and to severe dementia of the subcortical type in two. Such a clinical profile is highly suggestive of an ischemic process, but, in the absence of pathologic data, the term “strokelike episodes” has been used in the present description. Computed tomography and MRI showed small, well-delineated lesions compatible with, though not diagnostic of, small, deep infarcts, which seem, remarkably, to spare the cortex. The other principal feature of the condition is a white matter disorder, as shown by leukoaraiosis on CT scan and increased signal return on T2-weighted imaging on MRI. Such a leukoencephalopathy has been described in numerous disorders and its significance is still debated; its frequency increases with age, systemic hypertension, other vascular risk factors, and in patients presenting with stroke or dementia. In the present family, it is remarkable in that it is also observed in some young, symptom-free family members having either an affected parent or a parent with the same subclinical white matter disorder.

Extensive cardiovascular investigations helped to rule out the majority of classic causes of cerebral ischemia such as atheroma, cardiac emboli, or hematologic disorders. The association of multiple subcortical strokes and white matter disease is suggestive of Binswanger’s disease and can also be observed in lacunar syndromes. However, the present disorder differs from these in its earlier onset, low rate of hypertension (1 of 9), and autosomal dominant pattern of inheritance. Among the familial conditions that can cause stroke, hereditary dyslipoproteinemia, thrombotic disorders, homocystinuria, and Fabry’s disease have distinct clinical presentations and were ruled out by appropriate investigations. Familial cerebral amyloid angiopathy cannot be formally excluded without brain histology, but the absence of cerebral hemorrhage in this family made it unlikely. Strokelike episodes, white-matter disease, and muscular lipidosis are features of MELAS syndrome. However, the absence of ragged-red fibers, the normality of muscular mitochondrial respiratory
chain and \(\beta \)-oxidation investigations, and the absence of a number of the usual clinical features of MELAS (onset during childhood, mental retardation, cortical infarcts) do not favor this diagnosis. Three other families\(^{13-15} \) with autosomal dominant recurrent strokes have been reported, but in the absence of MRI and muscle biopsies, it is impossible to know whether they suffer from the same condition.

Thus, in the present family, there appears to be a new autosomal dominant syndrome characterized by recurrent subcortical strokelike episodes, leukoencephalopathy, and muscular lipidosis. It is interesting to note that the familial nature of this condition was long ignored, mainly because of the relatively late age of onset of symptoms. It might well be that its real frequency is presently underestimated. The cause of this disease, the responsible genetic defect, the role of the abnormal immune status, and the pathogenesis of the strokelike episodes remain to be elucidated.

Note added in proof. Patient III-19 died on December 12, 1990. Macroscopic examination of the brain showed a recent massive striate hemorrhage on the left side. The remaining white matter on both sides looked greyish and granular with multiple small lacunes. Detailed neuropathologic data will be presented in a second paper to be submitted for publication in this journal.

Acknowledgments

We are grateful to all the residents and physicians who helped us, particularly to Drs. A. Abanou, R. Aylward, M.A. Bach, N. Baumann, J. Breton-Goriou, M. Chaussain, F. Danon, D. Dormont, M. Jouas, C. Marsac, J. Tamraz, and A. Tourbah, and to Prs. J.R. Feve, J.C. Homberg, A. Munich, J. Pouget, S. Richard, and M. Samama. We are indebted to Mrs. Jocelyne Ruffie and Nadia Kneisky for their assistance in the preparation of the manuscript and to Dr. B. Youl for helping with the English. We would also like to thank most warmly all the members of the family for their remarkable collaborative support.

References

KEY WORDS • dementia, vascular • leukoencephalopathy • migraine

Downloaded from http://stroke.ahajournals.org/ by guest on October 30, 2017
Autosomal dominant syndrome with strokelike episodes and leukoencephalopathy.
E Tournier-Lasserve, M T Iba-Zizen, N Romero and M G Bousser

Stroke. 1991;22:1297-1302
doi: 10.1161/01.STR.22.10.1297

Stroke is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1991 American Heart Association, Inc. All rights reserved.
Print ISSN: 0039-2499. Online ISSN: 1524-4628

The online version of this article, along with updated information and services, is located on the
World Wide Web at:
http://stroke.ahajournals.org/content/22/10/1297

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Stroke can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Stroke is online at:
http://stroke.ahajournals.org/subscriptions/