Deriving Clinical Prediction Rules From Stroke Outcome Research

Daniel B. Hier, MD, and Gilda Edelstein, MS

Background and Purpose. Our purpose was to determine whether clinical prediction rules could be derived from current stroke outcome research.

Summary of Report. We reviewed 92 articles on stroke outcome research to determine their suitability for implementation as a clinical prediction rule. Methodological problems in many of these studies made implementation of their results as a clinical prediction rule difficult.

Conclusions. Implementation of stroke outcome research as clinical prediction rules would be facilitated by description of patient population demographics; precise definitions of predictor and outcome measures; stratification of patients by stroke mechanism; use of adequate patient sample sizes; and description of the mathematical methods used, including coding schemes, cutpoints, beta coefficients, constant terms, and a priori probabilities. (Stroke 1991;22:1431-1436)

Clinical prediction rules have emerged as tools to assist physicians in predicting outcomes for individual patients with specified diseases.1 The wide dissemination of pocket, notebook, laptop, and desktop computers has given impetus to the implementation of these rules.

Clinical prediction rules use multivariate statistical methods to examine the predictive power of independent variables to predict disease outcomes.2 The goal of these methods is to create a parsimonious statistical model using a restricted number of predictor variables to predict patient outcome. Prediction rules are based on a variety of statistical methods, including logistic regression, discriminant analysis, life-tables with proportional hazards, and multiple linear regression. In the case of stroke, predictor variables may be derived from demographics (age, gender, race), medical history (e.g., diabetes, hypertension, heart disease), neurological history (e.g., mode of onset, headache), neurological examination (e.g., aphasia, hemiparesis, hemianopia, level of consciousness), or laboratory examinations (e.g., computed tomography, magnetic resonance imaging, electroencephalography). Outcomes predicted include survival, stroke recurrence, and level of functional recovery.

A recent symposium on “Methodologic Issues in Stroke Outcome Research” has highlighted some problems with past and current stroke outcome research.3 We examined studies of stroke outcome published between 1981 and 1991 to assess their applicability to the creation of a clinical prediction rule. Our purpose was to determine whether useful clinical prediction rules could be derived from the available published results.

Methods

We searched the Index Medicus between 1981 and 1991 for articles on stroke outcome or prognosis. Articles on transient ischemic attacks or articles not primarily designed to examine stroke outcome were excluded from the study. Ninety-two articles were reviewed; four examined outcome of cerebellar infarction or hemorrhage,4-7 38 examined outcome after either cerebral infarction or a heterogeneous stroke population,8-45 21 examined outcome of intracerebral hemorrhage,46-66 and 29 examined outcome of subarachnoid hemorrhage.67-95 Sixty-seven of the articles examined survival as a stroke outcome (Table 1). Each of these 67 articles was evaluated as to which of 31 predictor variables were either predictive or not predictive for survival after stroke (Table 1).

Twenty-seven of the studies used multivariate methods. These studies were subjected to an additional evaluation similar to that suggested by Wasson et al.1 We applied the following criteria to each published report:

Gender. Was the composition of the patient sample by gender reported?

Race. Was the composition of the patient sample by race reported?

Socioeconomic status. Was some measure of the socioeconomic status of the sample reported?
Table 1. Predictors of Survival After Stroke Based on 67 Published Articles

<table>
<thead>
<tr>
<th>Adverse predictors</th>
<th>Infarctions or mixed stroke (n=21)</th>
<th>Intracerebral hemorrhage (n=21)</th>
<th>Subarachnoid hemorrhage (n=21)</th>
<th>Cerebellar strokes (n=21)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demographic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Older age</td>
<td>3/6</td>
<td>0/1</td>
<td>1/1</td>
<td></td>
</tr>
<tr>
<td>Male sex</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No spouse</td>
<td>2/2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Socioeconomic class</td>
<td>0/2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nonwhite race</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medical</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heart failure</td>
<td>5/5</td>
<td>0/1</td>
<td>1/1</td>
<td></td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>2/5</td>
<td>0/1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Angina</td>
<td>1/2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypertension</td>
<td>3/8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atrial fibrillation</td>
<td>0/2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prior myocardial infarction</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abnormal electrocardiogram</td>
<td>2/2</td>
<td>1/2</td>
<td>1/1</td>
<td></td>
</tr>
<tr>
<td>Obesity</td>
<td>1/2</td>
<td>0/1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pulmonary disease</td>
<td>1/1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prior stroke</td>
<td>3/3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smoking</td>
<td>0/2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Renal disease</td>
<td>1/1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Higher hematocrit</td>
<td>0/1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Higher blood sugar</td>
<td>0/1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incontinence</td>
<td>1/1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neurologic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Greater weakness</td>
<td>11/11</td>
<td>2/6</td>
<td>2/5</td>
<td></td>
</tr>
<tr>
<td>Cognitive impairment</td>
<td>7/8</td>
<td>5/5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impaired consciousness</td>
<td>1/1</td>
<td>18/18</td>
<td>9/10</td>
<td>4/4</td>
</tr>
<tr>
<td>Greater stroke size</td>
<td>18/19</td>
<td>8/8</td>
<td>2/3</td>
<td></td>
</tr>
<tr>
<td>Stroke location</td>
<td>2/3</td>
<td>4/5</td>
<td>0/2</td>
<td></td>
</tr>
<tr>
<td>Lower ADL score</td>
<td>0/2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stroke progresses</td>
<td>1/1</td>
<td>1/1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrocephalus</td>
<td>2/4</td>
<td>2/3</td>
<td>2/2</td>
<td></td>
</tr>
<tr>
<td>Mass effect</td>
<td>3/5</td>
<td>3/4</td>
<td>1/1</td>
<td></td>
</tr>
<tr>
<td>Ventricular extension</td>
<td>6/6</td>
<td>5/5</td>
<td>0/1</td>
<td></td>
</tr>
<tr>
<td>Headache</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data given as number of studies finding adverse predictor significant/number of studies examining predictor. ADL, activities of daily living.

Age. Was the composition of the patient sample by age reported?

Sample size. Was the sample size adequate for the multivariate method used and the number of predictor variables examined? As a rule of thumb, we considered sample size adequate if there were 10 patient cases for each predictor variable examined.

Adequate definitions. Were predictor variables and outcome variables precisely defined, including coding schemes for categorical (e.g., sex) or ordered (e.g., level of consciousness) variables? For continuous variables (e.g., blood pressure), was the unit of measurement specified? The method of measurement of both predictor and outcome variables should be reproducible by clinicians at other sites.

Stratification by stroke mechanism. As a minimum, studies should distinguish between subarachnoid hemorrhage, intracerebral hemorrhage, and ischemic infarction. Preferably, infarction should be further separated into lacunar, embolic, or atherosclerotic mechanisms. Studies should be limited to those which look at a specific stroke mechanism, stratify patients according to stroke mechanism, or enter stroke mechanism into the multivariate model as an independent predictor variable.

Description of mathematical methods. The mathematical methods utilized should be adequately described.

Description of mathematical model. The mathematical prediction model should be adequately described and should include the coding scheme for the pre-
predictor and outcome variables, the beta coefficients, and the constant terms. For classification functions, discriminant functions, or logistic regression, cutpoints should be described.

Base probabilities. Base probabilities should be specified. For discriminant analysis and logistic regression, the a priori class memberships should be reported (e.g., in a study of 100 cases of intracerebral hemorrhage, 70% survived at 30 days). For life-table studies using Cox regression methods, the base survival curve should be reported in either tabular or graphic format (e.g., after ischemic infarction, 80% of patients survived 1 year and 70% survived 2 years).

Predictive power of model. Some measure of the predictive power of the model and the predictor variables should be reported. For discriminant analysis and logistic regression, predictive power can be assessed by comparing the classification rate of the model with the base class memberships. For life-table models, predictive power can be estimated by reporting the relative risks associated with various values of the predictor variables.

Validation. Some method of validation of the prediction rule should be provided (e.g., replication of results in a new sample, split-half sample analysis, jack-knife).

Results
A large number of predictors were examined in the 67 studies examining survival after stroke (Table 1). The most frequently examined predictors were weakness, impaired level of consciousness, and stroke size. Age was the most commonly examined demographic factor, whereas race, gender, and education were not routinely examined. Only a few studies examined the effect of concurrent medical conditions on stroke outcome. Although most studies evaluated the effect of stroke size on stroke outcome, most studies did not examine the influence of mass effect, hydrocephalus, or stroke location on outcome.

The 27 multivariate studies were evaluated for their possible application as clinical prediction rules (Table 2). Twelve studies were deficient with regard to description of the patient sample by gender, 22 were deficient with regard to race, 12 were deficient with regard to age, and 23 were deficient with regard to socioeconomic status. Three of the studies lacked adequate definitions of or coding schemes for their predictor variables. Four studies lacked either adequate definitions for their outcome variables or had an outcome variable that was judged to be difficult to

TABLE 2. Study Characteristics of Multivariate Studies of Stroke Outcome

<table>
<thead>
<tr>
<th>First author</th>
<th>Publication year</th>
<th>Patients (n)</th>
<th>Predictors (n)</th>
<th>Patient type</th>
<th>Outcome assessed</th>
<th>Statistical method</th>
<th>Predictive model</th>
<th>Measure of predictive power</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adams</td>
<td>1985</td>
<td>1,778</td>
<td>11</td>
<td>SAH</td>
<td>Survival</td>
<td>Logistic regression</td>
<td>Yes</td>
<td>Relative risk ratio</td>
</tr>
<tr>
<td>Bonita</td>
<td>1988</td>
<td>635</td>
<td>16</td>
<td>MS</td>
<td>Survival</td>
<td>Proportional hazards</td>
<td>Yes</td>
<td>Survival curves</td>
</tr>
<tr>
<td>Chambers</td>
<td>1987</td>
<td>1,713</td>
<td>9</td>
<td>MS</td>
<td>Survival</td>
<td>Proportional hazards</td>
<td>Yes</td>
<td>Survival curves</td>
</tr>
<tr>
<td>Deverat</td>
<td>1991</td>
<td>166</td>
<td>11</td>
<td>ICH</td>
<td>Functional</td>
<td>Logistic regression</td>
<td>No</td>
<td>Odds ratio</td>
</tr>
<tr>
<td>Disney</td>
<td>1988</td>
<td>184</td>
<td>16</td>
<td>SAH</td>
<td>Survival</td>
<td>Discriminant analysis</td>
<td>Yes</td>
<td>Classification rate</td>
</tr>
<tr>
<td>Dove</td>
<td>1984</td>
<td>97</td>
<td>17</td>
<td>MS</td>
<td>Survival</td>
<td>Logistic regression</td>
<td>No</td>
<td>Odds ratio</td>
</tr>
<tr>
<td>Fullerton</td>
<td>1988</td>
<td>206</td>
<td>35</td>
<td>MS</td>
<td>Survival</td>
<td>Logistic regression</td>
<td>Yes</td>
<td>Classification rate</td>
</tr>
<tr>
<td>Henley</td>
<td>1985</td>
<td>172</td>
<td>44</td>
<td>MS</td>
<td>Survival</td>
<td>Discriminant analysis</td>
<td>Yes</td>
<td>Classification rate</td>
</tr>
<tr>
<td>Hertanu</td>
<td>1984</td>
<td>41</td>
<td>4</td>
<td>MS</td>
<td>Functional</td>
<td>Multiple regression</td>
<td>Yes</td>
<td>Multiple R</td>
</tr>
<tr>
<td>Hijioka</td>
<td>1988</td>
<td>176</td>
<td>6</td>
<td>SAH</td>
<td>Survival</td>
<td>Logistic regression</td>
<td>Yes</td>
<td>Class rate</td>
</tr>
<tr>
<td>Howard</td>
<td>1986</td>
<td>4,219</td>
<td>12</td>
<td>MS</td>
<td>Survival</td>
<td>Proportional hazards</td>
<td>Yes</td>
<td>Relative risk ratio</td>
</tr>
<tr>
<td>Howard</td>
<td>1985</td>
<td>379</td>
<td>16</td>
<td>INF</td>
<td>Survival</td>
<td>Logistic regression</td>
<td>Yes</td>
<td>Odds ratio</td>
</tr>
<tr>
<td>Kelly-Hayes</td>
<td>1988</td>
<td>213</td>
<td>13</td>
<td>MS</td>
<td>Survival</td>
<td>Logistic regression</td>
<td>Yes</td>
<td>None</td>
</tr>
<tr>
<td>Levine</td>
<td>1986</td>
<td>29</td>
<td>3</td>
<td>INF</td>
<td>Functional</td>
<td>Multiple regression</td>
<td>No</td>
<td>Multiple R</td>
</tr>
<tr>
<td>Loewen</td>
<td>1990</td>
<td>50</td>
<td>7</td>
<td>MS</td>
<td>Functional</td>
<td>Multiple regression</td>
<td>Yes</td>
<td>Multiple R</td>
</tr>
<tr>
<td>Niemi</td>
<td>1988</td>
<td>46</td>
<td>9</td>
<td>MS</td>
<td>Functional</td>
<td>Multiple regression</td>
<td>No</td>
<td>Multiple R</td>
</tr>
<tr>
<td>Portenoy</td>
<td>1987</td>
<td>112</td>
<td>8</td>
<td>ICH</td>
<td>Survival</td>
<td>Logistic regression</td>
<td>Yes</td>
<td>Classification rate</td>
</tr>
<tr>
<td>Sacco</td>
<td>1989</td>
<td>1,273</td>
<td>20</td>
<td>INF</td>
<td>Recurrence</td>
<td>Logistic regression</td>
<td>Yes</td>
<td>Relative risk ratio</td>
</tr>
<tr>
<td>Shah</td>
<td>1989</td>
<td>258</td>
<td>26</td>
<td>MS</td>
<td>Functional</td>
<td>Multiple regression</td>
<td>Yes</td>
<td>Multiple R</td>
</tr>
<tr>
<td>Sobel</td>
<td>1989</td>
<td>243</td>
<td>7</td>
<td>INF</td>
<td>Recurrence</td>
<td>Logistic regression</td>
<td>No</td>
<td>Relative risk ratio</td>
</tr>
<tr>
<td>Solzi</td>
<td>1983</td>
<td>1,369</td>
<td>6</td>
<td>INF</td>
<td>Survival</td>
<td>Proportional hazards</td>
<td>Yes</td>
<td>Median survival</td>
</tr>
<tr>
<td>Tuhrim</td>
<td>1988</td>
<td>94</td>
<td>85</td>
<td>ICH</td>
<td>Survival</td>
<td>Logistic regression</td>
<td>Yes</td>
<td>Classification rate</td>
</tr>
<tr>
<td>Ueda</td>
<td>1987</td>
<td>255</td>
<td>17</td>
<td>MS</td>
<td>Functional</td>
<td>Logistic regression</td>
<td>No</td>
<td>None</td>
</tr>
<tr>
<td>Viitanen</td>
<td>1987</td>
<td>428</td>
<td>13</td>
<td>MS</td>
<td>Survival</td>
<td>Proportional hazards</td>
<td>Yes</td>
<td>Relative risk ratio</td>
</tr>
<tr>
<td>Wadie</td>
<td>1984</td>
<td>162</td>
<td>51</td>
<td>MS</td>
<td>Survival</td>
<td>Multiple regression</td>
<td>Yes</td>
<td>Multiple R</td>
</tr>
<tr>
<td>Wadie</td>
<td>1985</td>
<td>99</td>
<td>14</td>
<td>MS</td>
<td>Functional</td>
<td>Multiple regression</td>
<td>Yes</td>
<td>Multiple R</td>
</tr>
<tr>
<td>Wadie</td>
<td>1987</td>
<td>976</td>
<td>17</td>
<td>MS</td>
<td>Functional</td>
<td>Multiple regression</td>
<td>Yes</td>
<td>Multiple R</td>
</tr>
</tbody>
</table>

SAH, subarachnoid hemorrhage; MS, mixed stroke type; ICH, intracerebral hemorrhage; INF, infarction.
implement by other investigators. Fifteen of the studies failed to stratify patients by stroke mechanism. In 10 of the studies, the sample size was judged inadequate for the number of predictor variables examined. All studies described the mathematical methods utilized; however, in seven studies an inadequate description of the mathematical model derived was given (i.e., missing beta coefficient or constant terms). Only one study failed to give the a priori or base probabilities for outcome. Two of the studies failed to give some measure of the predictive power of the model (e.g., R-squared, classification rate, odds ratio). None of the studies provided any form of validation of the predictive model presented (Table 1).

Discussion

Four forces are encouraging physicians to apply clinical prediction rules to stroke patients: 1) large stroke patient databases are available,96 2) sophisticated mathematical methods exist for the creation of prediction rules from these patient databases, 3) computers are increasingly available in the hospital and office environment to implement these prediction rules, and 4) expert systems are under development to assist physicians with stroke care.97 Although studies of stroke outcome are abundant, our understanding of the predictors of stroke outcome is still sketchy and incomplete. Only a few predictors, such as level of consciousness, stroke size, and weakness, have been studied in detail (Table 1). Although we found 27 multivariate studies of stroke outcome (Table 2), many of these studies would be difficult to implement as a clinical prediction rule. Many were flawed by a failure to describe patient demographics or to precisely define predictive and outcome measures. Seven of the studies lacked a sufficiently detailed description of the predictive model to allow its implementation as a prediction rule. None of the studies provided any validation of the predictive model presented. Taking the lead from Wasson et al,1 we suggest that future multivariate studies of stroke outcome be designed so as to be potentially useful as clinical prediction rules. Future multivariate studies of stroke outcome should consider including the following elements:

1) Studies should report patient demographics including race, gender, age, and socioeconomic status. As indicated by Table 1, more information is needed about the influence of sex, age, race, and socioeconomic status on stroke outcome. Race has known effects on stroke type,98 but its effects on stroke outcome are largely unstudied. The effects of gender on stroke outcome or stroke type have not been carefully scrutinized (Table 1). Age appears to be an adverse predictor of most but not all stroke outcomes (Table 1). Education and socioeconomic status may influence outcome in multi-infarct dementia,99 but their influence on stroke outcome is largely unknown. Studies also need to identify any patient selection biases that might influence the generalizability of the prediction rule.

2) Studies should report precise definitions of both the predictor and outcome measures, including variable coding schemes.

3) Patients should be stratified by stroke mechanism. The growing availability of computed tomography and magnetic resonance imaging makes the distinction between cerebral infarction and cerebral hemorrhage routine. Predictor variables may vary according to stroke mechanism (Table 1).

4) Sample size should be adequate for the number of predictor measures evaluated.

5) Both the mathematical methods used and the mathematical model derived (including beta coefficients, cutpoints, and constant terms) should be described in sufficient detail to allow implementation by other investigators.

6) Base or a priori probabilities should be given for all outcomes.

7) The predictive power of the predictive model, including classification rates and odds ratios, should be reported.

8) Attempts to validate the predictive model should be reported. However, accurate description of the predictive model will allow other investigators to validate the predictive model externally.

References

Stroke Vol 22, No 11 November 1991

69. Ropper AH, Zervas NT: Outcome 1 year after SAH from cerebral aneurysms. J Neurol Neurosurg Psychiatry 1984;60:909–915

82. Gurushinge NT, Richardson AE: The value of computerized tomography in aneurysmal subarachnoid hemorrhage: The concept of CT score. J Neurol Neurosurg Psychiatry 1984;60:763–770

KEY WORDS • cerebrovascular disorders • stroke outcome
Deriving clinical prediction rules from stroke outcome research.
D B Hier and G Edelstein

Stroke. 1991;22:1431-1436
doi: 10.1161/01.STR.22.11.1431

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://stroke.ahajournals.org/content/22/11/1431

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Stroke can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Stroke is online at:
http://stroke.ahajournals.org//subscriptions/