study is predicated upon our previous reported work in this subject over the last 15 years.2-4

It is, in our view, essential to be consistent in the use of our tested and validated instruments. For example, the Northwick Park Activities of Daily Living (ADL) Index5 and the Frenchay Index6 are both well-established tools, as are the psychological and behavioral instruments that we also utilize. Our study is not a controlled trial; it is an observational study with meticulous control of data collection procedures, and the nature of this basically anthropological study is such that it needs to use robust and reliable instruments over a lengthy period of time.

We are disappointed in the response to our short communication by Shah and Cooper. Obviously, neither the occasion nor the context of this report lends itself to the details of a full formal communication. We did not, for example, have an opportunity to discuss in any detail the fundamental importance of the concepts of ADL competence and ADL performance, a subject on which we have recently written and shall shortly be publishing.

Most of the criticisms are not relevant to an abbreviated report of a paper given at an invited symposium and could be just as incorrectly applied to most of the other contributions to this excellent symposium.

Finally, we are not only “content to use the less-discriminative 3-point scale” in our ADL Index, but feel that its tested and published accuracy and undoubted functional relevance clearly vindicate its application and continued use in this important area of study.

Dennis S. Smith, MD
Michael S. Clark
Unit of Rehabilitation
School of Medicine
The Flinders University of South Australia
Repatriation General Hospital
Daw Park, South Australia

References


Responses of Rat Basilar Artery to Acetylcholine and Platelet Products In Vivo

To the Editor:

Faraci et al1 reported vasoactive responses of rat basilar artery to platelet products in vivo. They found more potent responses for basilar artery than for pial arterioles, a difference which they suggest could be related to the vessel size. Based on their extravascular topical applications of several agents, they suggested that extravascular, as well as intravascular, platelet aggregation byproducts might play a role in such conditions as subarachnoid hemorrhage or intra-arterial thromboembolism.2

We recently described rupture of the arterial wall in two cases of leptomeningeal thromboembolism.3 We suggested that, at the level of the occluded arterial segment, which has a healthy and relatively thick media, the embolism could induce direct intimal injury. The resulting stimulation of the smooth muscle cells would provoke an arterial spasm, leading to rupture of the wall.

We also are not forgetting that the clot, which releases vasoconstrictor agents, could play a role in causing spasm. The experimental results of Faraci et al1 help explain more completely a fact already pathologically illustrated.3 Such vasoactive responses may have important clinical implications, as in cases of embolic migration, hemorrhagic infarct, subarachnoid hemorrhage, or even nonhypertensive intracerebral hemorrhage,4-6 a fact nevertheless as yet unrecognized.7

Yves De Smet, MD
Jean Marie Brucher, MD
Laboratoire de Neuropathologie
Université Catholique de Louvain
Bruxelles, Belgium

References


The following is in response:

To the Editor:

We appreciate the interest and comments of Drs. De Smet and Brucher regarding our recent paper.1 We agree that the findings may have clinical implications. One might speculate, based on the findings, that extravascular aggregation of platelets following subarachnoid hemorrhage, and perhaps intravascular aggregation in atherosclerotic arteries, may produce important effects on cerebral blood vessels. Vascular responses to individual platelet products suggest that the net effect of these products would result in much greater constriction of large cerebral arteries than of arterioles in the microcirculation.

Frank M. Faraci, PhD
William G. Mahan, PhD
Donald D. Heistad, MD
Department of Internal Medicine
University of Iowa College of Medicine
Iowa City, Iowa

Reference


Effect of Elevated Norepinephrine Levels on Electrocardiographic Changes in Subarachnoid Hemorrhage

To the Editor:

In their article, Grad and colleagues1 purport to show that prolonged QT intervals or abnormal U waves are not correlated with increased plasma norepinephrine levels observed after sub-
The correlation of ECG changes with plasma norepinephrine (NE) levels on an individual patient basis revealed that the same 20 patients who had elevated NE levels on admission retained them 3 and 7 days after the bleed. Three days after SAH, they were joined by six patients who had had normal NE levels on admission; of these, the NE level increase was considerable in four and slight in two. Increased NE levels were observed again on day 7 after SAH in the former four patients and returned to normal in the latter two patients. Thus, these results do not support any great...
Effect of elevated norepinephrine levels on electrocardiographic changes in subarachnoid hemorrhage.
S Oppenheimer and V Hachinski

Stroke. 1991;22:1465-1467
doi: 10.1161/01.STR.22.11.1465.b

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://stroke.ahajournals.org/content/22/11/1465.2.citation