Letters to the Editor

Hemodilution in Ischemic Stroke
To the Editor:

Koller et al report on a positive clinical effect of hypervolemic hemodilution in ischemic stroke. However, their data cause doubts about the conclusions they draw. Baseline neurological scores in the two groups differ considerably, although without significance, in favor of the hemodiluted group. Since clinical evidence suggests an inverse correlation between clinical outcome and initial severity of ischemic deficits, this difference may render the comparison unreliable. Nevertheless, improvement in the hemodiluted group was 13 points (24%), whereas the control group improved by 10.8 points (23%). Thus there is no significant difference in favor of hypervolemic hemodilution, even after exclusion of dead patients from the analysis.

The Mathew score and its subscores obviously are not independent. The overall type 1 error can be greater than 0.05; therefore, Bonferroni’s correction or another type of significance control for multiple tests is mandatory. The same argument has to be taken into account with repeated group comparisons at different time intervals. The curves of Figure 2 of Koller et al are based on a linear transformation of the individual scores. It is questionable, however, whether this method is really applicable because a relative change of improvement in a minimally affected patient has quite a different impact than the same relative change in a severely affected one.

Mortality among hemodiluted patients was higher than in the control group (five versus three patients). In one hemodiluted patient, “hypervolemia may have contributed to the death” (due to myocardial infarction). The Hemodilution in Stroke Study Group terminated its trial on hypervolemic hemodilution because of adverse effects, i.e., clinical deterioration under isovolemic hemodilution among hemodiluted patients with deep infarctions.5 6

In summary, the results presented allow only the following conclusions: the superiority of hypervolemic hemodilution has not been proved with a sufficient degree of certainty, and treatment-related increased mortality cannot be excluded due to the small sample size.

H. Mast, MD
H.-P. Vogel, MD
P. Marx, MD
Neurological Department
Klinikum Steglitz
Free University Berlin
Berlin, FRG

References

Predicting Outcomes After Intracerebral Hemorrhage
To the Editor:

In a carefully performed prospective study, Daverat et al have generated predictive models of outcome after intracerebral hemorrhage. But the models could represent self-fulfilling prophecies, as commented on in a prior work by Tuhrim et al.2-3 Death may be a function of treatments, given or withheld, which in turn may be a function of age. What effects did surgical drainage of hematomas have on outcome, and were such surgeries more likely to be performed on younger than older patients? What proportion of patients had limitation of medical support, and did the proportion differ in younger versus older patients? Without such information, assessment of the predictive models is difficult.

W.T. Longstreth Jr., MD
Division of Neurology
Harborview Medical Center
Seattle, Wash.

References

The following is in response:
To the Editor:

In our study,1 we prospectively analyzed outcome after intracerebral hemorrhage (ICH). Our approach was a very pragmatic one, attempting to generate initial predictive models on the day of the stroke. Death could certainly be a function of treatments, whether given or withheld, particularly surgical drainage. But our study was not an assessment of surgical treatment after ICH. The treatment given was the one supposed to be the best, i.e., surgical drainage in large hematomas with midline shift. The age of the patient was not a factor in such a surgical decision. In our sample, 31 of 166 patients (18.7%) initially underwent operation. The mean age of patients operated on was 62.1 ± 7.2 years, whereas the mean age of patients not operated on was 60.6 ± 10.7 years. The difference was not statistically significant (Student’s t test = 0.98, p = 0.33). Eighteen patients (58%) with surgical drainage died versus 53 (39.3%) in the non-operated group, with a nonsignificant difference (χ² = 2.91, p = 0.09). This could be explained because the decision for surgery was based on hemorrhage size, associated with midline shift, which are important predictors of mortality.

P. Daverat, MD
Service de Rééducation Fonctionnelle
Hôpital Pellegrin
Bordeaux, France

Reference
1. Daverat P, Castel JP, Dartigues JF, Orgogozo JM: Death and functional outcome after spontaneous intracerebral hemor-
Predicting outcomes after intracerebral hemorrhage.
W T Longstreth, Jr

doi: 10.1161/01.STR.22.7.955.b

*Stroke* is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1991 American Heart Association, Inc. All rights reserved.
Print ISSN: 0039-2499. Online ISSN: 1524-4628

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://stroke.ahajournals.org/content/22/7/955.2.citation

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in *Stroke* can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to *Stroke* is online at:
http://stroke.ahajournals.org/subscriptions/