Effects in Cats of Inhibition of Nitric Oxide Synthesis on Cerebral Vasodilation and Endothelium-Derived Relaxing Factor From Acetylcholine

Enoch P. Wei, PhD; Rakesh Kukreja, PhD; and Hermes A. Kontos, MD, PhD

Background and Purpose: We investigated the chemical identity of the endothelium-derived relaxing factor generated by acetylcholine in cerebral microvessels by studying the effects and mechanism of action of inhibitors of nitric oxide synthesis from arginine in the vasodilation and endothelium-derived relaxing factor production induced by topical application of acetylcholine in cerebral arterioles.

Methods: We determined cerebral arteriolar dilation and endothelium-derived relaxing factor production by bioassay in anesthetized cats equipped with cranial windows during superfusion of 10⁻⁷ M acetylcholine before and after administration of either N⁶-monomethyl L-arginine or N⁶-nitro-L-arginine, two inhibitors of nitric oxide synthesis.

Results: N⁶-Nitro-L-arginine abolished the vasodilation from acetylcholine and eliminated the production of endothelium-derived relaxing factor in the bioassay experiments. N⁶-Monomethyl L-arginine had no effect on the response to acetylcholine in the absence of pretreatment. However, after pretreatment with the detergent sodium dodecyl sulfate to increase cell membrane permeability, the inhibitor had effects identical to those of N⁶-nitro-L-arginine. L-Arginine reversed the effects of the inhibitors of nitric oxide synthesis. Neither inhibitor affected baseline vascular caliber, nor did they generate a vasoconstrictor agent in the bioassay experiments. The two inhibitors of nitric oxide synthesis did not affect the response to nitroprusside or adenosine, showing that the effect on responses to acetylcholine was specific. Also, the blockade of the response to acetylcholine induced by the inhibitors of nitric oxide synthesis was unaffected by treatment with superoxide dismutase and catalase, showing that the effect was not mediated by oxygen radicals.

Conclusion: The endothelium-derived relaxing factor generated by acetylcholine in cerebral arterioles of cats is either nitric oxide or a nitric oxide-containing substance. The effect of these inhibitors on the response to acetylcholine is mediated by inhibition of the synthesis of nitric oxide. There is no involvement of radicals, and no vasoconstrictor agent is generated. (Stroke 1992;23:1623-1629)

Key Words • acetylcholine • endothelium • vasodilation • cats

There is strong evidence that the endothelium-derived relaxing factor (EDRF) released by acetylcholine or bradykinin from isolated large blood vessels in vitro or by bradykinin from cultured endothelial cells is nitric oxide synthesized from arginine or a nitric oxide–containing compound such as a nitrosothiol.1-4 Corroborating evidence supporting this view has been obtained by the use of inhibitors of nitric oxide synthesis from arginine, such as N⁶-monomethyl L-arginine (L-NMMA) and N⁶-nitro-L-arginine (L-NOARG),5,6 in experiments in vitro and in vivo, including cerebral microvessels. L-NMMA caused vasoconstriction and inhibition of the vasodilation from acetylcholine in the cerebral arterioles of mice and rats7-8 and in the basilar artery of rats.9

See Editorial Comment, p 1628

We studied the effects of L-NMMA and L-NOARG on the vasodilation induced by acetylcholine in cerebral arterioles of anesthetized cats and on EDRF production by acetylcholine for three reasons.

1. In earlier studies10,11 we had found that the EDRF generated by acetylcholine in cerebral arterioles of anesthetized cats could be pharmacologically distinguished from nitric oxide. Two possibilities remain. The first is that the EDRF from acetylcholine is a nitric oxide–containing compound such as a nitrosothiol. Indeed, in this vascular bed the properties of S-nitroso-cysteine resemble very closely the properties of the EDRF from acetylcholine.11 The other alternative is that the EDRF from acetylcholine is a totally unrelated compound. The use of inhibitors of nitric oxide synthesis can distinguish between these two possibilities.
Materials and Methods

Experiments were carried out in cats weighing 2–3.3 kg and anesthetized with 30 mg/kg i.v. sodium pentobarbital. After tracheostomy, each cat was ventilated with a positive-pressure respirator. After all operative procedures were completed, the animals received 5 mg/kg i.v. gallamine triethiodide for skeletal muscle paralysis. Additional doses of anesthetic were given to maintain surgical anesthesia. Prior to the administration of the paralyzing agent, the administration of additional doses of anesthetic was determined by responses to corneal reflex testing or to tail pinching. After the administration of the paralyzing agent, we gave the anesthetic at regular intervals at the same rate as before the animals were paralyzed. The end-expiratory CO₂ of the cats was continually monitored with a Hewlett-Packard CO₂ analyzer (Palo Alto, Calif.) and was maintained at a constant level of about 30 mm Hg. Arterial blood pressure was measured with a Statham pressure transducer (Glen Burnie, Md.) connected to a cannula introduced into the aorta via the femoral artery. Arterial blood samples were collected for determination of Pao₂ and Paco₂, pH, and hematocrit at appropriate intervals during the experiment. Blood gas tensions and pH were measured with Corning electrodes (Corning, N.Y.). Hematocrit was measured by a micromethod. Rectal temperature was monitored continuously and was kept constant with a heating blanket.

The cerebral microcirculation of the parietal cortex was visualized through acutely implanted cranial windows, as described in detail previously. In most cases, we used two symmetrical windows that were placed to overlie the parietal cortex of each hemisphere for comparative studies. The space under the cranial windows was filled with artificial cerebrospinal fluid (CSF) identical in composition to the CSF of cats. Each window was equipped with three openings. One port of the window was connected to a low-pressure Statham transducer for continuous monitoring of intracranial pressure. The intracranial pressure was maintained at 5 mm Hg by connecting the outlet of the window to a coiled plastic tube the free end of which was placed at the appropriate height to give the desired pressure. Two ports of the cranial window were used as inlet and outlet, allowing topical application of various solutions by superfusion. Pial arteriolar diameter was measured with a Vickers image-splitting device attached to a Wild microscope equipped with a ×6.5 dry objective. In each cat, several arterioles were observed under each window.

In some experiments, we assayed EDRF in vivo as described in detail previously. We used cats equipped with double cranial windows. The two windows were connected in series either by a long route with a transit time of 2 minutes or by a short route with a transit time of 6 seconds. The donor window was superfused with a solution of 10⁻⁷ M acetylcholine and the superfusate, after passing through the donor window, was directed via either the short or the long route through the assay window. The assay window was subjected to muscarinic blockade with atropine. The absence of responsiveness to the direct effects of acetylcholine in the assay window was verified in each experiment. We showed in earlier experiments that in this preparation acetylcholine generates a short-lived vasodilator agent that can be transferred to induce vasodilation in the assay window. This vasodilator agent has characteristics identical to those of the EDRF induced by acetylcholine in large vessels in vitro. It is therefore believed to be the EDRF induced by acetylcholine from cerebral microvessels.

Acetylcholine chloride, adenosine, sodium nitroprusside, L-NOARG, sodium dodecyl sulfate (SDS), superoxide dismutase (SOD) (from bovine blood, 3,000 units/mg protein), catalase (from bovine liver; 40,000 units/mg protein), and L-arginine were obtained from Sigma Chemical Co., St. Louis, Mo. L-NMMA was obtained from Calbiochem Corp., La Jolla, Calif. Nitroglycerin was prepared from tablets as described before. All agents were dissolved in artificial CSF immediately prior to the experiment. The artificial CSF was equilibrated with 6% CO₂, 0.5% O₂, balance N₂ at 37°C to give gas tensions and pH identical to that of CSF for cats. Solutions of various inhibitors were injected into the space under the window and left there for the specified periods. Vasoactive agents such as acetylcholine, adenosine, and nitroprusside were administered by constant superfusion at a rate of 1 ml/min.

Several series of experiments were performed. 1. In six cats we first determined the responses to topical superfusion with 10⁻⁷ M acetylcholine. The effect of acetylcholine was tested again after topical application of L-NMMA in doses of 10, 20, 50, and 100 μM. Each dose of L-NMMA was left in contact with the brain for 10 minutes before acetylcholine was superfused.

2. In a second series of six cats we essentially repeated the experiment described above except that the entire experiment was carried out after a 10-minute topical application of 20 μM SDS to the brain surface. This was done to increase cellular permeability and facilitate the entry of L-NMMA into vascular smooth muscle. The technique of permeabilization to facilitate the entry of various agents into the interior of cells where the agents gain access to intracellular enzymes has been used successfully in isolated hepatocytes and in cultured ovarian cells as well as very extensively in various types of muscle including vascular smooth muscle and cardiac muscle. Subsequently, we tested the responses to 10⁻⁷ M acetylcholine superfusion before
and after a 10-minute application of 20 \mu M L-NMMA as well as after topical application of 50, 100, 200, and 1,000 \mu M L-arginine. Each dose of L-arginine was left for 10 minutes before testing the responses to acetylcholine.

3. In a third series of experiments in four cats we tested the responses to 10^{-7} M acetylcholine superfusion as well as the presence of EDRF in the effluent by bioassay before and after a 10-minute application of L-NMMA in the donor window and after the topical application of 1 mM L-arginine for 10 minutes in the donor window. The entire experiment was done after a 10-minute application of SDS in the donor window as described above.

4. In a fourth series of experiments in six cats we tested the effects of superfusion of 10^{-7} M acetylcholine as well as the presence of EDRF in the effluent by bioassay before and after a 10-minute application of 20 \mu M L-NOARG in the donor window and after application of 1 mM L-arginine in the donor window.

5. In a fifth series of experiments in six cats equipped with double cranial windows, we tested the effect of the inhibitors of nitric oxide synthesis on the responses to nitroprusside, nitroglycerin, and adenosine. One window was treated with 20 \mu M L-NOARG for 10 minutes. The other window was treated first with 20 \mu M SDS followed by 20 \mu M L-NMMA for 10 minutes. Responses to topical applications of 10^{-6} M nitroprusside, 1.9×10^{-6} M nitroglycerin, and 10^{-4} M adenosine were tested before and after application of the nitric oxide inhibitors.

6. In a sixth series of four cats we tested the duration of inhibition of the vasodilator response to acetylcholine by the nitric oxide synthesis inhibitors as well as the dependence of their effect on oxygen radicals. We used SDS followed by L-NMMA in two cats and by L-NOARG in two other animals. L-NMMA and L-NOARG were left in contact with the brain for 10 minutes and were then washed out with fresh artificial CSF. The response to 10^{-7} M acetylcholine was tested before the application of the nitric oxide synthesis inhibitors and 10, 30, 60, and 90 minutes after their application and washout. At the end of the experiment we again tested the response to acetylcholine in the presence of 60 units/ml SOD plus 40 units/ml catalase.

In all protocols all vessels studied were used for all drugs tested.

Statistical analyses were done by analysis of variance. If significant differences were found by this technique, differences between individual group means were evaluated by t tests modified for multiple comparisons. Data are reported as mean±SEM.

Results

Mean arterial blood pressure in all the cats averaged 119±2.0 mm Hg; PaCO$_2$ was 28±0.5 mm Hg, and PaO$_2$ was 113±1.7 mm Hg. None of the interventions used had any influence on mean arterial blood pressure or blood gases.

Figure 1 shows that, in the absence of pretreatment, L-NMMA did not affect baseline cerebral arteriolar caliber and did not modify the vasodilator response to topical superfusion of acetylcholine.

Figure 2 shows that responsiveness to topical applications of acetylcholine, nitroprusside, nitroglycerin, and adenosine were not altered by prior treatment with the detergent SDS. The doses of acetylcholine, nitroprusside, nitroglycerin, and adenosine used gave responses on the ascending limb of the dose–response curve for each agent and none caused supermaximal vasodilation. Similarly, SDS did not alter baseline arteriolar diameters. Following SDS application to increase cellular permeability, topical application of L-NMMA eliminated the vasodilator response to acetylcholine (Figure 3). Subsequent topical application of L-arginine restored the vasodilator response to acetylcholine in a dose-dependent fashion (Figure 3). L-NMMA after SDS with or without L-arginine did not alter baseline vessel caliber. At 100–1,000 \mu M L-arginine by itself was not vasoactive (data not shown).

Figure 4 shows that, after SDS, L-NMMA eliminated the vasodilator response to acetylcholine and caused

![Figure 1](https://example.com/figure1.png)

Figure 1. Bar graph showing effect of topical application of N6-monomethyl L-arginine (L-NMMA) without pretreatment on response to topical application of 10^{-7} M acetylcholine. Mean±SEM baseline diameter from which percent change was derived is listed in \mu m above each bar. Results are from 41 vessels in five cats. Note that L-NMMA caused no change in baseline diameter and no change in response to acetylcholine.

![Figure 2](https://example.com/figure2.png)

Figure 2. Bar graph showing effects of topical application of sodium dodecyl sulfate (SDS) on vasodilator responses to topical application of 10^{-7} M acetylcholine (ACH), 10^{-6} M nitroprusside (NP), 1.9×10^{-6} M nitroglycerin (NTG), and 10^{-4} M adenosine (AD). Mean±SEM baseline diameter from which percent change was derived is shown above each column in \mu m. Data are from 41 vessels in six cats. Note that SDS did not affect baseline diameter and did not alter responses to any vasodilator agent used.
FIGURE 3. Bar graph showing effect of topical application of \(\text{N}^{\text{G}} \)-monomethyl L-arginine (L-NMMA) after pretreatment with sodium dodecyl sulfate (SDS) on vasodilator response to topical acetylcholine. Mean±SEM baseline diameter from which percent change was derived is shown in \(\mu \text{m} \) above each column. Note that L-NMMA blocked response to acetylcholine completely and that subsequent topical application of L-arginine (L-ARG) restored vasodilator response to acetylcholine in dose-dependent manner. Results are from 42 vessels in six cats.

disappearance of the EDRF induced by acetylcholine from the effluent as indicated by the absence of vasodilation in the assay window during superfusion with acetylcholine. L-Arginine restored both normal vasodilator responsiveness to acetylcholine in the donor window as well as the presence of EDRF in the effluent.

FIGURE 4. Bar graphs showing effect of \(\text{N}^{\text{G}} \)-nitro-L-arginine (L-NOARG) on vasodilator response to topical acetylcholine and on endothelium-derived relaxing factor (EDRF) generated by acetylcholine in presence and absence of L-arginine (L-ARG). Figure shows percent change in diameter induced by superfusion at donor window with acetylcholine (left panel) and responses observed in donor window by cross-perfusion of effluent from donor window through a route with transit time of 6 seconds (right panel). Diversion of effluent via a route with transit time of 2 minutes resulted in complete abolition of all responses (data not shown). Data are from 34 vessels in donor window and 25 vessels in assay window from six cats. Mean±SEM baseline diameter from which percent change was derived is shown in \(\mu \text{m} \) above each column. Note that L-NOARG completely eliminated vasodilation from acetylcholine in donor window and eliminated EDRF from effluent. L-ARG restored both effects to normal.

Discussion

The short-lived vasodilator material generated by acetylcholine in these experiments is very likely the EDRF induced by this agent in cerebral vessels for four reasons. 1) Various agents that eliminate the vasodila-
plus catalase on blockade induced by L-NMMA or monomethyl L-arginine (L-NOARG) in two cats and by sodium dodecyl sulfate in two other cats. Results are from 29 vessels in four cats. Mean±SEM baseline diameter from which percent change was derived is shown in \(\mu \text{m} \) above each column. Note that neither L-NOARG nor L-NMMA had any significant effect on baseline diameter and that they did not affect responses to nitroprusside or adenosine.

Figure 6. Bar graphs showing effect of \(\text{NO}^-\)-nitro-L-arginine (L-NOARG) (left panel) and \(\text{NO}^-\)-monomethyl L-arginine (L-NMMA) (right panel) on vasodilator responses to topical application of nitroprusside and adenosine. Results are from 26 vessels with L-NOARG and 25 vessels with L-NMMA in six cats. Mean±SEM baseline diameter from which percent change was derived is shown in \(\mu \text{m} \) above each column. Note that neither L-NOARG nor L-NMMA had any significant effect on baseline diameter and that they did not affect responses to nitroprusside or adenosine.

Figure 7. Plot of time course of effect of inhibition of nitric oxide (NO) synthesis on vasodilator response to topical application of nitroprusside and adenosine. Blockade of NO synthesis was accomplished by \(\text{NO}^-\)-nitro-L-arginine (L-NOARG) in two cats and by \(\text{NO}^-\)-monomethyl L-arginine (L-NMMA) following topical application of sodium dodecyl sulfate in two other cats. Results with either compound were identical; therefore, data were combined. Data are from 29 vessels in four cats. Mean±SEM baseline diameter from which percent change was derived is shown above appropriate data point in \(\mu \text{m} \). Figure also shows effect of topical application of superoxide dismutase (SOD) plus catalase on blockade induced by L-NMMA or L-NOARG. It is seen that blockade of response to acetylcholine lasted for the full 90 minutes of observation and that SOD plus catalase were ineffective in reversing effect of inhibition of NO synthesis.

An important finding of these experiments was that L-NMMA was effective in blocking the vasodilator action of acetylcholine and the generation of EDRF induced by acetylcholine only after cellular permeability was increased with the topical application of a detergent. This suggests that unlike L-NOARG, L-NMMA does not readily penetrate the cell membrane of vascular smooth muscle in cerebral arterioles of cats. The possibility that low cellular membrane permeability to the nitric oxide synthase inhibitors may explain negative results obtained with the use of these agents must be considered. Clearly, such negative experiments do not warrant the conclusion that an EDRF different from nitric oxide or a nitric oxide-containing compound is nitric oxide or a nitric oxide-containing compound. As indicated above, earlier experiments had distinguished between the EDRF from acetylcholine and nitric oxide by pharmacological means and showed that a nitrosothiol (S-nitroso-L-cysteine) resembled the EDRF from acetylcholine much more closely than nitric oxide did.

An important finding of these experiments was that L-NMMA was effective in blocking the vasodilator action of acetylcholine and the generation of EDRF induced by acetylcholine only after cellular permeability was increased with the topical application of a detergent. This suggests that unlike L-NOARG, L-NMMA does not readily penetrate the cell membrane of vascular smooth muscle in cerebral arterioles of cats. The possibility that low cellular membrane permeability to the nitric oxide synthase inhibitors may explain negative results obtained with the use of these agents must be considered. Clearly, such negative experiments do not warrant the conclusion that an EDRF different from nitric oxide or a nitric oxide-containing compound is involved, unless the presence of a permeability barrier preventing access of these inhibitors to the interior of vascular smooth muscle is excluded.

In our preparation, administration of the nitric oxide synthase inhibitors did not alter basal arteriolar diameter. This is consistent with the view that there is no basal secretion of EDRF in this preparation. This also agrees with earlier findings in which we found that in bioassay experiments no detectable basal secretion of EDRF occurred in the absence of an agonist and no change in vascular caliber occurred when the vascular bed was treated with agents that destroyed EDRF, such as methylene blue. This may represent a species difference between cats and rodents. It is also evident from the findings of the bioassay experi-
ments that acetylcholine following inhibition of nitric oxide synthesis did not generate a transferable vasoconstrictor agent.

An important finding is that acetylcholine in the presence of inhibitors of nitric oxide synthesis caused no change in vascular caliber despite the fact that acetylcholine is known to have a direct vasoconstrictor effect on vascular smooth muscle. This result is different from what is seen when the response to acetylcholine is converted to vasoconstriction in the presence of oxygen radicals. The difference between the present experiments and these earlier findings is that the vessels in the presence of radicals are dilated. Perhaps the vasoconstrictor effect of acetylcholine is expressed only when vascular smooth muscle is relaxed. Another possibility is that acetylcholine in the presence of oxygen radicals generates a vasoconstrictor agent. Finally, the vasoconstriction from acetylcholine in the presence of oxygen radicals may be due to interaction with EDRF, which eliminates the vasodilation from the radicals.

We were unable to confirm the observation that oxygen radicals participate as mediators of the effect of L-NMMA on the response to acetylcholine. The topical application of SOD and catalase, which eliminate all the reactive products of univalent reduction of oxygen including superoxide and hydrogen peroxide and prevent the formation of hydroxyl radical, did not affect the blockade of the response to acetylcholine by either L-NMMA or L-NOARG. We do not know whether this represents a difference between cats and mice.

References

Editorial Comment

Since publication of the seminal paper by Furchgott and Zawadzki, endothelium-derived relaxing factor (EDRF) has been one of the hottest topics in vascular biology. Major questions include the following: What is the chemical nature of EDRF? What is the role of EDRF in physiology and disease states? And recently, what is the therapeutic role of augmented synthesis or inhibition of synthesis of EDRF?

This study addresses the first question. Studies by Moncada’s group (e.g., Reference 2) propose that nitric oxide (NO) is EDRF. Kontos, at a presentation several years ago, asked rhetorically whether we now know the chemical nature of EDRF. His answer, on the next slide, was NO. This ambiguous answer is still appropriate. Several investigators, including Myers et al and Wei and Kontos, have provided strong evidence that NO may not be EDRF but may be incorporated in EDRF. It is clear that in cerebral blood vessels there is more than one EDRF. This study provides evidence to support the hypothesis that the EDRF that is generated by acetylcholine in cerebral arteries of cats is NO or an NO-containing
Effects in cats of inhibition of nitric oxide synthesis on cerebral vasodilation and endothelium-derived relaxing factor from acetylcholine.
E P Wei, R Kukreja and H A Kontos

Stroke. 1992;23:1623-1628
doi: 10.1161/01.STR.23.11.1623

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://stroke.ahajournals.org/content/23/11/1623