require a little extra effort by a third party (other than the treatment and outcome assessment teams) to prepare a therapeutic regimen and to mask the treatment codes. The third party could be anyone (e.g., the project leader, a senior investigator, or just a technician assigned to another project) who does not actually participate in surgery, drug administration, animal care, or outcome assessment.

We concur that “confirmatory manuscripts” should be published. However, discrepancies in trial outcomes caused by a disparity in the quality of trial protocols may delay ultimate determination of the true effect of a new drug. Application of stringent criteria in preclinical trials will reduce the number of publications reporting spurious results and in the long run be cost-effective.

Chung Y. Hsu, MD, PhD
Division of Restorative Neurology and Human Neurobiology
Baylor College of Medicine
Houston, Tex

References

Acute Unilateral Hydrocephalus Caused by a Small Intracerebral Hemorrhage Obstructing the Foramen of Monro

Unilateral hydrocephalus (UH) has been rarely reported since Von Mohr. It is caused by obstruction of one of the paired foramina of Monro and clinically characterized by symptoms of increased intracranial pressure, such as headache, change in mental status, and ataxia. We report here a case of small left intracerebral hemorrhage with UH. An 84-year-old woman was admitted to our hospital with confusion and gait disturbance of acute onset. On admission, the neurological examination revealed right central facial palsy and truncal ataxia. Hematological and biochemical investigations were normal. An immediate computed tomographic scan showed a small high-density area suggestive of hematoma in contact with the anterior horn of the left lateral ventricle, with ventricular perforation and enlargement of the ipsilateral ventricle (Figure, panels a and b). Magnetic resonance imaging (MRI) was performed on hospital day 7. In T1-weighted images a lesion obstructing the left foramen of Monro was clearly demonstrated (panel c). Angiography was not performed. The patient was treated conservatively, and her symptoms were ameliorated. A follow-up MRI performed on hospital day 30 revealed no lesion in the region of the foramen of Monro (Figure, panel d) and showed that the lateral ventricles had become symmetrical.

Computed tomographic scan shows a small hematoma in contact with the anterior horn of the left lateral ventricle, with ventricular perforation and enlargement of the ipsilateral ventricle (panels a and b). T1-weighted magnetic resonance imaging (MRI; repetition time [TR], 500 msec; echo time [TE], 30 msec) shows a lesion obstructing the left foramen of Monro (c). Follow-up MRI (TR, 550 msec; TE, 30 msec) reveals disappearance of the lesion (d).

UH may be caused by various lesions, including tumor, arteriovenous malformation, or aneurysm. In the present case we could not establish a definite etiology of the hematoma. From the follow-up MRI appearances, however, we speculated that this is an example of spontaneous intracerebral hemorrhage caused by a small vascular malformation or cryptic aneurysm.

Shingo Ohkawa, MD
Yuko Osuhmi, MD
Masayasu Tabuchi, MD
Neurology Service
Hyogo Brain and Heart Center

Atsushi Yamadori, MD
Department of Clinical Neuroscience
Hyogo Institute for Aging Brain and Cognitive Disorders
Himeji, Japan

References
Acute unilateral hydrocephalus caused by a small intracerebral hemorrhage obstructing the foramen of Monro.
S Ohkawa, Y Ohsumi, M Tabuchi and A Yamadori

Stroke. 1993;24:1602
doi: 10.1161/01.STR.24.10.1602
Stroke is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1993 American Heart Association, Inc. All rights reserved.
Print ISSN: 0039-2499. Online ISSN: 1524-4628

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://stroke.ahajournals.org/content/24/10/1602.citation