Case Reports

Venous Sinus Thrombosis Associated With Androgens in a Healthy Young Man

Assia Serradj Jaillard, MD; Marc Hommel, MD; Michel Mallaret, MD

Background

Cerebral venous sinus thrombosis is rare and can be promoted by various conditions. We report the case of cerebral venous thrombosis in a patient using androgens.

Case Report

A 31-year-old man using androgens for bodybuilding was admitted for headache and vomiting. He had cerebral venous sinus thrombosis, but extensive examinations did not reveal any known cause.

Conclusions

We suggest that androgens may promote cerebral venous thrombosis. The mechanisms of venous thrombosis related to androgens may be platelet activation or an increase in coagulation factors. Because androgen use may be frequent and hidden in athletes, it may be an underestimated cause of cerebral venous sinus thrombosis in the young.

Key Words • drug abuse • platelet activation • sinus thrombosis • young adults

Cerebral venous sinus thrombosis (CVST) is a rare category of stroke that can be promoted by a variety of conditions.1,2 We describe a young male bodybuilder without underlying disease who developed CVST while undergoing androgen injection for 5 years.

Case Report

A 31-year-old Portuguese man was hospitalized 2 hours after sudden onset of severe headache and vomiting, which occurred during a bodybuilding workout. At admission, he was oriented but drowsy, had a right central facial paresis, and his visual acuity was diminished due to papilledema. Noncontrast computed tomography revealed a dense triangle sign of the superior sagittal sinus,2 and a hyperdensity of the straight sinus (Fig 1) and of the left transverse sinus. With contrast injection, the delta sign was present in the superior sagittal sinus. Four days after admission, cerebral angiography showed complete occlusion of these sinuses and of the proximal part of the right lateral sinus. Eight days after admission, magnetic resonance imaging showed a high signal intensity in the superior sagittal sinus, in the left transverse sinus (Fig 2), and in the upper part of the jugular vein in T1- and T2-weighted images. At admission, serum luteinizing hormone was less than 0.65 mIU/mL (normal, 1 to 12 mIU/mL), follicle-stimulating hormone was less than 0.65 mIU/mL (normal, 1 to 8 mIU/mL), and plasma testosterone was 0.9 nmol/L (normal, 13 to 19 nmol/L). Chest x-ray, hemogram, coagulation studies, serum electrophoresis, erythrocyte sedimentation rate, ionogram, and cerebrospinal fluid were normal. There was no protein S, protein C, or antithrombin III deficiency. Homocystinemia, autoantibodies, and cryoglobulins were absent. Infection, cardiac disease, sarcoidosis, and neoplasia were not found. The patient's human leukocyte antigen type was HLA-B35. He had no personal or familial history of thromboembolic event, or personal history of any disease. He admitted that a physician had been giving him intramuscular injections of androgens: 25 mg testosterone twice a month, and 100 mg metolone (Primabolan) and 75 mg trembolone (Parabolon) weekly for 5 years. Anticoagulation therapy was initiated the first day of admission with intravenous heparin for 12 days and oral anticoagulation thereafter for 6 months. The patient completely recovered within 15 days. After 3 months, luteinizing hormone, follicle-stimulating hormone, and testosterone had returned to normal. He went back to bodybuilding training but stopped androgen administration. No recurrence of CVST occurred during the following year.

Discussion

Although there is no evidence that androgens are thrombogenic in humans, arterial stroke and deep vein thrombosis have been linked with androgen abuse in athletes4-6 and with androgen treatments in patients suffering from aplastic anemia or hypogonadism.7,8 Animals pretreated with androgens have higher mortality rates, greater clot size, and lower arterial occlusion times than untreated controls in response to thrombotic stimuli.9 These effects may be mediated through platelet aggregation because androgens potentiate platelet aggregation both in vitro and in vivo through either increased production of thromboxane A2 or decreased production of prostacyclin.10 In athletes, androgen use increases platelet sensitivity to collagen.6 Androgens may also predispose to thrombosis by increasing collagen and other fibrous proteins in arterial vascular tissues and skin.10 Moreover, as danazol is used in

Received August 26, 1993; final revision received October 8, 1993; accepted October 11, 1993.

From the Département de Neurosciences Cliniques et Biologiques, Service de Neurologie et Neuropsychologie (A.S.J.), Département de Neurosciences Cliniques et Biologiques, Clinique Neurologique (M.H.), and the Unité de Pharmacovigilance (M.M.), Centre Hospitalier Universitaire de Grenoble, Grenoble, France.

Correspondence to Assia Serradj Jaillard, Département de Neurosciences Cliniques et Biologiques, Service de Neurologie et Neuropsychologie, Centre Hospitalier Universitaire de Grenoble, BP 217 - 38043, Grenoble, Cedex 9, France.
hemophilia to increase factors VIII and IX, androgens may raise the levels of coagulation factors.\textsuperscript{11}

Despite extensive evaluation, we failed to disclose a known cause of CVST in our patient. Therefore, we hypothesize that CVST may be caused by androgens. As far as we know, no case of CVST has been reported in a patient receiving androgens without underlying disease. Because the use of androgens may be frequent and hidden in athletes,\textsuperscript{6} the presence of central neurological symptoms in such a population requires the consideration of CVST, which may have a severe course without treatment. Moreover, androgen use may be an under-diagnosed cause of cerebral venous thrombosis in the young.

References


Venous sinus thrombosis associated with androgens in a healthy young man.
A S Jaillard, M Hommel and M Mallaret

Stroke. 1994;25:212-213
doi: 10.1161/01.STR.25.1.212

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://stroke.ahajournals.org/content/25/1/212

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Stroke can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Stroke is online at:
http://stroke.ahajournals.org/subscriptions/