Carotid Angioplasty
Detection of Embolic Signals During and After the Procedure
Hugh S. Markus, MRCP; Andrew Clifton, FRCR;
Tim Buckenham, FRACR; Martin M. Brown, MD

Background and Purpose Carotid angioplasty may offer an
effective treatment for carotid stenosis, but there has been
concern about the incidence and clinical consequences of
distal embolization. Transcranial Doppler monitoring in ca-
rotid endarterectomy has demonstrated embolic signals during
this procedure. We used this technique in patients undergoing
carotid angioplasty.

Methods Transcranial Doppler ultrasound was used to
monitor for embolic signals in the ipsilateral middle cerebral
artery before and during 10 technically successful carotid
angioplasties and at various standardized times in the follow-
ing month.

Results In the month before angioplasty asymptomatic
embolic signals were detected in 3 of 10 patients. During
angioplasty multiple embolic signals were detected immedi-
ately after balloon inflation in 9 of 10 subjects. A minor
ipsilateral cerebral ischemic event occurred in 1 of these 9, but
the other 8 were asymptomatic. Embolic signals were common
immediately after the procedure and intra-arterial femoral
catheter removal (8 of 10 subjects) but thereafter became less
frequent and were present in 1 of 5 at 4 hours, 2 of 10 at 48
hours, 1 of 6 at 7 days, and 1 of 10 at 1 month.

Conclusions Embolization at the time of carotid angi-
oplasty is very common but usually asymptomatic; monitoring
by means of Doppler ultrasound will allow the effectiveness
of measures to reduce this embolization to be studied. Late
embolization occurs in a minority of patients and may account
for the small but significant risk of delayed stroke. Doppler
monitoring may allow identification of patients at risk and
assessment of the effectiveness of prophylactic therapy.

(Stroke. 1994;25:2403-2406.)

Key Words • angioplasty • carotid artery diseases •
• cerebral embolism and thrombosis • hemodynamics •
• ultrasonics

C
arotid endarterectomy reduces stroke risk in
patients with severe symptomatic carotid ste-
nosis, but recent trials have reported a periop-
erative risk of stroke or death of 7.5%1 and 5%.2 Carotid
percutaneous transluminal angioplasty (PTA) has a
number of potential advantages including a shorter
admission, avoidance of an anesthetic and surgical
incision, and an ability to dilate surgically inaccessible
lesions such as high internal carotid artery stenoses.3 An
understandable concern about distal embolization has
led to a reluctance to use carotid PTA; this is in marked
contrast to coronary and peripheral artery PTA, which
have been widely adopted. In these situations the risk
of embolization, estimated by the rate of myocardial
infarction and clinical distal arterial emboli, ranges
from 4% to 5%.4,5 However, the true incidence of
asymptomatic embolization may be much higher, and
emboli of a size that are asymptomatic in the coronary
and peripheral arterial circulation may cause neuro-
logical deficits in the cerebral circulation. No prospec-
tive studies have yet published data on the risks of
clinical embolization with carotid PTA, but an over-
view of a number of retrospective studies suggested a
stroke rate of less than 5%.6

Subjects and Methods

Fifteen consecutive subjects undergoing PTA for symp-
matic carotid stenosis were studied. Patients were part of a
randomized trial comparing carotid PTA with carotid endar-
terectomy for which ethical permission had been obtained. In
2 patients adequate Doppler signals could not be obtained
from the middle cerebral artery. In 3 the guide wire could not
be passed through the carotid stenosis. In 10 subjects techni-
cally successful carotid PTA was performed, and the data from
these 10 patients are presented. Mean (SD) age was 62.2 (7.7)
years (range, 53 to 76 years); 8 subjects were male. The vessel
undergoing angioplasty was the left internal carotid artery in
7, the right internal carotid artery in 2, and the left common
carotid artery in 1. In 1 case the stenosis was in the distal
internal carotid artery. The degree of carotid stenosis deter-
mined angiographically was 50% to 59% in 1, 60% to 69% in
3, 70% to 79% in 1, 80% to 89% in 3, and 90% to 99% in 2
subjects. Patients had presented with amaurosis fugax or
retinal infarct (5), nondisabling stroke (2), transient ischemic
attack (2), and amaurosis fugax and transient ischemic attack
(1).
Computed tomography showed ipsilateral cerebral infarcts in 3 patients and was normal in the other 7.

Carotid PTA was performed via the femoral artery route. A 6F sheath was placed in the femoral artery, through which a 5F Multi cerebral catheter was passed into the common carotid artery, and angiography was performed to confirm the degree of stenosis. An exchange wire was passed across the stenosis, and a balloon catheter was passed over this. An Optiplast Vasacath was used with a diameter of the inflated balloon of 5, 6, or 7 mm and a balloon length of 2 cm. Inflations were performed for 5 to 10 seconds, except for one 30-second inflation in 1 patient; the number of inflations was 1 in 1 subject, 2 in 2 subjects, 3 in 5 subjects, 4 in 1 subject, and 5 in 1 subject. Immediately after angioplasty selective arterial angiography of the angioplastied artery was performed.

The same TCD machine with a 2-MHz probe (TC2000 S, Eden Medizinische Elektronik GmbH) was used for all studies. The middle cerebral artery ipsilateral to the treated carotid artery was insonated via the transtemporal route at a depth of 46 to 54 mm with a sample volume of 10 mm. The probe was fixed in position by means of a head strap. The signal was recorded onto digital audiotape. Recordings before and after PTA, each of 20 minutes' duration, were analyzed at a later date by an observer blinded to the diagnosis; recordings from normal volunteers were interspersed. Perioperative recordings were analyzed in a similar way but unblinded because it was clearly apparent that they were operative recordings from the flow velocity changes and the embolic signals during PTA. Embolic signals were identified according to their previously documented characteristics:6–10 short-duration, unidirectional high-intensity signals visible in the Doppler spectrum accompanied by a characteristic "clicking" or "chirping" sound. Random fluctuations in the background Doppler signal or Doppler "speckle" are associated with intensity increases of up to 3 dB, and therefore an intensity cutoff of 4 dB was used as an additional criterion. Using this method we have found a very high interobserver correlation in the reporting of embolic signals.

The recorded Doppler signal was played back into the TCD machine for subsequent off-line analysis with specially designed software (EME Ltd) that allowed each time frame of the Fourier transform to be analyzed.12 The relative intensity increase (in decibels) of each embolic signal was calculated using the following equation: relative intensity increase=10 log (maximum relative power amplitude of embolic signal/background relative power amplitude measured at the same velocity from the same point in the next cardiac cycle). The duration of high-intensity signal (in milliseconds) was calculated from the number of time frames over which the relative intensity increase of the embolic signal was greater than 4 dB. Each time frame represents a 5-millisecond time interval.

Comparisons between intensity and duration at different time points were made by means of ANOVA and then Scheffe's test for comparisons between individual groups.

Results

In the month before carotid PTA, embolic signals were recorded in 3 of 10 subjects during the 20-minute recording period in the middle cerebral artery ipsilateral to the carotid stenosis. In these subjects 4, 3, and 3 embolic signals were detected.

Frequent embolic signals were detected during angiographic contrast injection. Multiple embolic signals were detected immediately after balloon deflation in 9 of 10 patients and usually persisted for two to five cardiac cycles (Figure). Embolic signals were seen with all inflations in these patients except in 1 patient in whom they were detected during three of four deflations. The signals became less numerous with successive deflations. There was no change in velocity during passage of the embolic signals. In contrast, neurological symptoms occurred in only 1 of 10 patients. This patient suffered an expressive dysphasia and a right-sided weakness with onset at the time of balloon deflation; he was 1 of the 9 with embolic signals detected after balloon deflation. The neurological signs rapidly resolved, and by 1 week the only residual deficit was a subjective numbness over the ulnar border of the right hand. Computed tomographic brain scan was normal. His preoperative stenosis was 90%, his mean middle cerebral blood flow velocity and pulsatility index were normal (47 cm/s and 0.88, respectively), and there was no reduction in flow velocity at the time of angioplasty.

Embolic signals were very common immediately after completion of the procedure and femoral catheter removal (8 of 10 subjects) and 2 hours after angioplasty (5 of 6 subjects) but became progressively less common after this, being present in 1 of 5 subjects at 4 hours, 2 of 10 at 48 hours, and 1 of 6 at 7 days (Table 1). One month after PTA all subjects remained asymptomatic, and embolic signals were only detected in 1 of 10 (subject 9); this subject has remained asymptomatic, and monitoring at 6 months revealed no embolic signals. The mean (SD) number of embolic signals per 20 minutes at each time point was as follows: immediately after PTA, 6.0 (10.0); 2 hours, 3.4 (3.5); 4 hours, 0.4 (0.9); 48 hours, 0.9 (1.9); 7 days, 0.5 (1.2); and 1 month, 0.2 (0.4). Embolic signals tended to be more intense and of longer duration immediately after PTA (Table 2), but differences between different times were not significant. All embolic signals in the month after PTA were asymptomatic, and none were accompanied by any alteration in middle cerebral artery blood flow velocity or waveform. We assessed carotid stenosis by carotid duplex at 1 month using published Doppler criteria13; stenosis was less than 50% in 8 subjects and 51% to 75% in 2 (patients 9 and 10).

Discussion

Numerous embolic signals were detected in almost all patients during and after carotid PTA. The evidence that these signals represent the passage of emboli is strong. Similar signals can be produced by experimental emboli in both flow14 and animal6,15 models. Similar
signals have been detected in patients with cerebral embolic sources, including cardiac valvular disease and carotid stenosis, but are rare in normal subjects. Their incidence parallels clinical stroke risk being greater with metallic than with bioprosthetic cardiac valves and with symptomatic than with asymptomatic carotid stenosis.

During routine angiography multiple asymptomatic embolic signals can be detected by TCD, and experimental studies suggest that these represent air emboli. Although air bubbles result in more intense signals than solid embolic materials such as atheroma and thrombus, with current Doppler equipment it is not possible to definitively differentiate air bubbles from solid embolic material. Therefore, it is uncertain whether individual embolic signals detected during passage of the balloon catheter through the stenosis represent solid emboli or residual air emboli from previous contrast injections.

The multiple emboli released at the time of balloon deflation are likely to represent solid emboli for a number of reasons. Signals of a similar extent were not seen during passage of the balloon catheter through the stenosis, no angiographic contrast injections had been given for a few minutes before balloon inflation, and the signals were less intense than those usually recorded with air emboli. Emboli release during angioplasty has been demonstrated experimentally in a model that used canine vessels acutely occluded by thrombus. In patients with carotid artery stenosis treated with carotid PTA by use of a distal occlusive balloon, the debris released after deflation of the proximal angioplasty balloon was extracted, and cholesterol crystals were found in two thirds of the cases. Our TCD results are consistent with the frequent immediate embolization seen in these models. Despite this frequent embolization, an overall stroke rate of less than 5% has been reported in an overview of studies of carotid PTA, suggesting that most emboli are asymptomatic. Consistent with this, despite the frequency of embolic signals after balloon deflation in our study, only 1 of 10 patients had a clinically evident neurological event; the detection of embolic signals after balloon deflation and the absence of any reduction in middle cerebral flow velocity at the time of onset suggest an embolic pathogenesis. Therefore, the very large majority of emboli were asymptomatic. Analysis of the duration and intensity increase of the embolic signals suggests that they result from emboli smaller than those studied in animal models, which range from greater than 200 to 400 \(\mu m \); their small size may contribute to their usually asymptomatic nature. TCD monitoring will allow evaluation of the effectiveness of methods to reduce distal embolization at the time of balloon deflation, such as a distal occlusive balloon, and the comparison of embolization during PTA with that during other equivalent procedures, such as atherectomy or rotational thrombectomy.

Late ischemic events have also been reported after carotid PTA; in one study of 35 carotid dilations in 32

Table 1. Number of Embolic Signals Detected in Individual Subjects Before and After Carotid Percutaneous Transluminal Angioplasty and Number of Balloon Deflations During Which Embolic Signals Were Detected

<table>
<thead>
<tr>
<th>Pt</th>
<th>No. of Balloon Inflations</th>
<th>No. of Deflations With ES</th>
<th>Before PTA</th>
<th>Immed</th>
<th>2 h</th>
<th>48 h</th>
<th>7 d</th>
<th>1 mo</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>6</td>
<td>4</td>
<td>...</td>
<td>0</td>
<td>...</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>...</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>10</td>
<td>...</td>
<td>...</td>
<td>0</td>
<td>...</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>6</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>...</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>...</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>...</td>
<td>...</td>
<td>0</td>
<td>0</td>
<td>...</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>...</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>33</td>
<td>9</td>
<td>2</td>
<td>6</td>
<td>3</td>
</tr>
</tbody>
</table>

Pt indicates patient; ES, embolic signals; PTA, percutaneous transluminal angioplasty; and Immed, immediately.

Table 2. Relative Intensity Increase and Duration (>4 dB) of Embolic Signals at Various Times After Carotid Percutaneous Transluminal Angioplasty

<table>
<thead>
<tr>
<th>Time after PTA</th>
<th>Relative Intensity Increase, dB</th>
<th>Duration, ms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before PTA</td>
<td>8</td>
<td>5.3 (1.2)</td>
</tr>
<tr>
<td>Immediately</td>
<td>65</td>
<td>6.3 (1.5)</td>
</tr>
<tr>
<td>2 h</td>
<td>18</td>
<td>5.4 (1.1)</td>
</tr>
<tr>
<td>4 h</td>
<td>2</td>
<td>4.1 (0.4)</td>
</tr>
<tr>
<td>48 h</td>
<td>6</td>
<td>5.8 (1.1)</td>
</tr>
<tr>
<td>7 d</td>
<td>3</td>
<td>7.2 (2.0)</td>
</tr>
<tr>
<td>1 mo</td>
<td>5</td>
<td>5.2 (1.3)</td>
</tr>
</tbody>
</table>

PTA indicates percutaneous transluminal angioplasty. Values are mean (SD). There was a trend toward lower intensity increase with increasing time after PTA (ANOVA, \(P = .03 \)), but individual comparisons (Scheffé's multiple comparison test) between relative intensity increases at different time periods were not significant. There were no significant differences between embolic signal duration at different times.
patients there were no neurological adverse events during the procedure, but in 3 patients contralateral sensorimotor deficits developed at 18, 24, and 36 hours after the procedure.22 After PTA with plaque rupture a complex series of events takes place, including endothelial denudation, cracking and disruption of the atherosclerotic plaque, and stretching of the media and adventitia.22 In animal models the denuded luminal surface returns to near normal thrombogenicity usually within approximately 24 hours, although this may take longer.23 Platelet aggregates and thrombus may form on the luminal surface, and their embolization may account for the risk of delayed stroke after carotid PTA. Although embolic signals were not detected after 24 hours in most patients, consistent with the animal experiments, they were still present in 2 of 10 subjects at 48 hours despite the prophylactic use of intravenous heparin and aspirin in our patients. TCD may allow both identification of patients in whom late embolization is occurring and assessment of the effectiveness of prophylactic pharmacological treatments.

Acknowledgments
This study was supported by the British Heart Foundation. We thank the angiographic suite staff and our ultrasound technician, Diana Colquhoun, for their help.

References
1. European Carotid Surgery Trialists' Collaborative Group. MRC European Carotid Surgery Trial: interim results for symptomatic patients with severe (70-99%) or with mild (0-29%) carotid stenosis. Lancet. 1991;337:1235-1243.
Carotid angioplasty. Detection of embolic signals during and after the procedure.
H S Markus, A Clifton, T Buckenham and M M Brown

Stroke. 1994;25:2403-2406
doi: 10.1161/01.STR.25.12.2403
Stroke is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1994 American Heart Association, Inc. All rights reserved.
Print ISSN: 0039-2499. Online ISSN: 1524-4628

The online version of this article, along with updated information and services, is located on the
World Wide Web at:
http://stroke.ahajournals.org/content/25/12/2403

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in
Stroke can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Stroke is online at:
http://stroke.ahajournals.org//subscriptions/