middle cerebral artery: reference values at rest and during hyperventilation in healthy volunteers in relation to age and sex.

Background Factors and Clinical Symptoms of Major Depression With Silent Cerebral Infarction

To the Editor:

In their recent article, “Background factors and clinical symptoms of major depression with silent cerebral infarction,” Fujikawa et al used magnetic resonance imaging to determine whether depressed patients had or did not have silent cerebral infarction and then compared the two groups in terms of a variety of risk factors for stroke and depression. It is surprising that the authors do not relate their findings to a large body of literature reporting similar results but using different terminology, ie, leukoencephalopathy, leukoaraisis, deep-white-matter hyperintensity, or subcortical hyperintensity. These terms are essentially used to describe hyperintensities on T2-weighted spin-echo magnetic resonance images of the brain.

Small hyperintensities are related to perivascular spaces; larger hyperintensities (maximum linear dimension, >5 mm) are usually seen on pathological examination to consist of areas of myelin pallor, infarcts, or lacunes. These large signal hyperintensities are the basis of patient classification by Fujikawa et al. A brief review of the literature that links these hyperintensities to depression may be of interest to your readers. Since the publication of our initial report indicating that these hyperintensities are common in elderly depressed patients, numerous researchers have noted the high frequency and severity of these hyperintensities in elderly depressed patients compared with control subjects. Coffey et al also reported that lesions of the basal ganglia were frequent in depressed patients compared with control subjects. Zubenko et al noted a higher incidence of cortical infarctions and leukoencephalopathy in depressed patients, and Figiel et al reported that the frequencies of large deep white-matter hyperintensities and lesions of the basal ganglia were greater in late-onset depressed patients than in those with early-onset depressed patients of similar age. Basal-ganglia hyperintensities have also been linked to an increased likelihood of delirium induced by antidepressants or electroconvulsive treatment.7

This fairly extensive literature and the report by Fujikawa et al suggest that cerebrovascular damage may be important in the pathophysiology of major depression in the elderly and worthy of further study.

K. Ranga Krishnan, MD

Division of Biological Psychiatry

Affective Disorders Program

Larry A. Tupler, PhD

Department of Psychiatry

Duke University Medical Center

Durham, NC

William M. McDonald, MD

Department of Psychiatry

Emory University School of Medicine

Atlanta, Ga

References

Response

We thank Drs Krishnan, Tupler, and McDonald for their comments on our article. In our study, we observed that cerebrovascular damage plays an important role in the pathophysiology of major depression in the elderly and that risk factors for cerebrovascular disease (eg, hypertension) are related to the onset of end-stage major depression. It was reported that severe major depression often persists despite antidepressant therapy and has a poor prognosis. Figiel et al reported that basal-ganglia hyperintensities are linked to an increased likelihood of delirium with antidepressants.

We suspect that major depression with silent cerebral infarction (especially mixed artery infarction with broad obstruction) persists despite administration of antidepressants and is related to refractory depression in old age. Subsequently, we suspect that major depression with mixed artery silent cerebral infarction can progress to vascular dementia. We would like to study further the response in the elderly to antidepressant therapy and the long-term prognosis for major depression with silent cerebral infarction.

Tokumi Fujikawa, MD

Shigeto Yamawaki, MD

Department of Psychiatry and Neurosciences

Hiroshima University School of Medicine

Hiroshima, Japan

References

'Normal' Tc-HmPAO Distribution in Large Subcortical Middle Cerebral Cerebral Artery Infarct

The term “luxury perfusion” is used to describe situations of paradoxical cerebral blood flow (CBF) increase or flow values that are high in comparison with metabolic demand. The idea prevailed until 1993 that the Tc-HmPAO hyperfixation observed in the subcortical stage after cerebral infarct was due to luxury perfusion. However, recent observations have shown that in these circumstances, hyperfixation with Tc-HmPAO does not always correspond with CBF increase. In the following case, single-photon computed tomography (SPECT) was clearly abnormal with 113mXe and 99mTc ethyl cysteinate dimer (99mTc-ECD) but paradoxically normal with Tc-HmPAO in the subcortical stage of middle cerebral artery (MCA) infarct.

A 34-year-old man came to our hospital on May 21, 1991, with meningeal hemorrhage consequent to rupture of a left carotid artery aneurysm. He underwent surgery 3 days later without...
'Normal' 99mTc-HmPAO distribution in large subacute middle cerebral artery infarct.
M Steinling, D Huglo, H Kolesnikov, R Vergnes and M Rousseaux

Stroke. 1994;25:2507-2508
doi: 10.1161/01.STR.25.12.2507.b

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://stroke.ahajournals.org/content/25/12/2507.2.citation

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Stroke can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Stroke is online at:
http://stroke.ahajournals.org/subscriptions/