Does Endothelin-1 Play a Role in the Pathogenesis of Cerebral Vasospasm?

Francesco Cosentino, MD; Zvonimir S. Katusić, MD, PhD

Background

Endothelin-1 is a very powerful endogenous vasoconstrictor substance produced by endothelial cells. Its long-lasting vasoconstrictor and hypertensive action has been well documented in several species, including humans.

Summary of Review

It is generally accepted that endothelin-1 may contribute to the pathogenesis of a number of cardiovascular diseases. In the cerebral vasculature, endothelin-1 has been proposed as a key mediator of cerebral vasospasm following subarachnoid hemorrhage. Availability of endothelin-1 antagonist provided a pharmacologic tool to test the role of endothelin in the development of vasospasm.

Conclusions

This brief review is focused on the controversial results reported by different groups concerning the possible role of endothelin-1 in narrowing of cerebral arteries exposed to autologous blood. (Stroke. 1994;25:904-908.)

Key Words • cerebral vasospasm • endothelin

Endothelial cells play a key role in the local regulation of the vascular smooth muscle tone by producing and releasing relaxing and contracting factors. Although the physiological role of endothelial-dependent contractions in regulation of the cardiovascular system is unclear, existing evidence supports the concept that vasoconstrictor substances may become important regulators of vascular tone under pathological conditions. Endothelin-1 (ET-1), one of the most potent endogenous vasoconstrictor substances known, is produced by endothelial cells. Its long-lasting vasoconstrictor and hypertensive action has been well documented, and it is generally accepted that increased production of ET-1 may contribute to the pathogenesis of a number of cardiovascular diseases.

In the cerebral vasculature, ET-1 has been proposed as a key mediator of cerebral vasospasm following subarachnoid hemorrhage (SAH). In cerebral arterial vasospasm after SAH, ET-1 in cerebral vasospasm after SAH.

Background

There are three structurally and pharmacologically separate endothelin (ET) isopeptides in human and other mammalian species named ET-1, ET-2, and ET-3. The only one produced by endothelial cells is ET-1. Endothelin-1 is well characterized and involves the final transformation of big ET-1 catalyzed by a putative endothelin-converting enzyme (ECE). The production of ET-1 is well characterized and involves the final transformation of big ET-1 catalyzed by a putative endothelin-converting enzyme (ECE). The relatively slow rate of production of ET-1 suggests that the peptide is more likely to participate in long-term regulation of vascular tone rather than in acute responses. Two different ET receptor subtypes have been identified: ETA and ETB. The ETA receptor has a greater affinity for ET-1 and ET-2, whereas the B subtype has about equal affinity for all endothelins. Cerebral arterial endothelial cells may produce ET-1. The contracting effect of the peptide on vascular smooth muscle can be explained not only by a direct activation of ETA receptor but also by sensitizing blood vessels to other vasoconstrictor substances. Such responses may favor the occurrence of abnormal vasoconstrictions and therefore be important in cerebral arterial vasospasm after SAH.

Endothelin-1 and Cerebral Vasospasm

To imply a major role for ET-1 in the pathophysiology of cerebral vasospasm after SAH, one would have to determine (1) cerebral vascular reactivity to ET-1, (2) levels of ET-1 after SAH, and (3) whether or not ECE inhibitors or selective ET-1 antagonists may prevent development of cerebral vasospasm.

Can ET-1 Induce Cerebral Vasospasm?

Several studies have confirmed the vasoconstrictor effect of ET-1 in cerebral arteries in vitro and in vivo. In isolated arteries ET-1-induced contractions are concentration dependent, long lasting, and difficult to wash.
Is ET-1 Production Increased During SAH?

One of the consequences of SAH is exposure of brain tissue to direct contact with blood. Production of ET-1 is stimulated by various vasoactive substances present in the blood, including arginine vasopressin, angiotensin II, and thrombin. Excessive local production of these substances is reported after SAH. Furthermore, oxyhemoglobin can directly stimulate endothelin biosynthesis in cultured endothelial cells. Excessive concentrations of oxyhemoglobin may also inactivate endothelium-derived nitric oxide, decrease cyclic guanosine monophosphate levels, with subsequent increased production of ET-1. However, the existence of a correlation between plasma or cerebrospinal fluid (CSF) ET-1 synthesis in cultured endothelial cells.44 Excessive concentrations of oxyhemoglobin may also inactivate endogenous production of ET-1. However, the existence of a correlation between plasma or cerebrospinal fluid (CSF) ET-1 synthesis in cultured endothelial cells.

The contrasting findings reported in the literature concerning the circulating levels of ET-1 and the availability of ECE inhibitors and ETα receptor antagonists prompted new studies to probe the potential link between ET-1 and this pathological condition.

Do ECE Inhibitors or ETα Receptor Antagonists Prevent Cerebral Vasospasm?

ET-1 is formed from big ET-1 via a putative ECE. Because big ET-1 is two or three orders of magnitude less potent a vasoconstrictor than ET-1, inhibition of ECE should effectively block the biological effects of ET-1. Although no specific inhibitors are available, a metalloprotease inhibitor, phosphoramidon, has been shown to reduce the conversion of big ET-1 to ET-1 in vitro and its pressor activity in vivo (Figure).

In dogs intracisternal administration of big ET-1 caused a profound decrease in the diameter of the basilar artery that was inhibited by pretreatment with phosphoramidon. Furthermore, phosphoramidon prevented development of cerebral vasospasm in a "double-hemorrhage" canine model of the disease. In contrast, there are studies that did not detect any preventive effect of phosphoramidon. In particular, the results of our study demonstrated that a daily intracisternal injection of a high dose of phosphoramidon did not significantly affect SAH-induced cerebral vasospasm.

Only a few studies have been reported concerning the effects of ETα receptor antagonists in experimental models of SAH so far. The ET-1 receptor antagonists...
tested were synthetic peptides named BQ123, BQ485, and FR139317.53,64-68 Recent reports on isolated arteries demonstrated selective inhibitory effect of BQ123 on ET-1-mediated contractions in systemic and pulmonary arterial vessels69-71 (Figure). In our study, BQ123 (10^{-5} mol/L) selectively inhibited contractions caused by ET-1 in canine basilar artery. However, daily intracisternal administration of BQ123 in a concentration 10 times higher than the concentration that in vitro abolished the contractile effect of ET-1 did not prevent experimentally induced cerebral vasospasm.52 These findings suggest that ET-1 may not be the major mediator responsible for the decrease in cerebral arterial diameter associated with SAH. By contrast, other reports showing that administration of ETA receptor antagonists reduces cerebral vasospasm support the hypothesis that ET-1 plays a key role in this condition.64-68 Differences in the experimental design of these studies may explain these contrasting findings, such as use of different species and models of the disease (rat, rabbit, dog; one hemorrhage versus double hemorrhage), and different concentrations and means and regimens of drug administration (intracisternal versus systemic; single or daily injections versus continuous infusion). After intracisternal administration, diffusion of the active drug to the arterial wall may be prevented by the thick clot surrounding the vessel. Therefore, it is necessary to acknowledge that the local concentration of active compounds may not be high enough to prevent the effect of ET-1.53 On the other hand, the reports of positive findings obtained in the groups treated with ETA receptor antagonist are not definite. Only a slight prevention of arterial narrowing after SAH was achieved (Table).

Historically, the research for single causal factors of cerebral vasospasm has been disappointing, implying a more likely multifactorial origin of this pathological condition. However, since the discovery of ET-1 and the characterization of its potent and long-term vasoconstrictor effect, an increasing number of studies have focused on the pathophysiological importance of ET-1 in cerebral vasospasm. With the recent development of ECE inhibitors and ETA receptor antagonists, research tools to better address this question have become available. The contradictory findings reported in the literature so far do not allow any definitive conclusion concerning the role of ET-1 in cerebral vasospasm. However, the attempt to implicate ET-1 as a putative mediator of cerebral vasoconstriction deserves further investigation. It is necessary to obtain more information on the pharmacokinetics of newly developed compounds to optimize the therapeutic regimen in terms of dose and timing. Moreover, additional studies with regard to characterization of expression of ET receptor subtypes in smooth muscle cells may help to determine if increased sensitivity to ET-1 contributes to chronic narrowing of cerebral arteries.72 These studies will certainly resolve the existing controversy surrounding the role of ET-1 in the pathogenesis of cerebral vasospasm.

Acknowledgments
This study was supported in part by United States Public Health Service Grant HL-44116 and by the Mayo Foundation. We would like to thank Robert Lorenz for preparing the Figure and Janet Beckman for typing the manuscript.

References

64. Clozel M, Watanabe H. BQ-123, a peptidic endothelin ET_A receptor antagonist, prevents the early cerebral vasospasm following subarachnoid hemorrhage after intracisternal but not intravenous injection. Life Sci. 1992;52:825-834.
Does endothelin-1 play a role in the pathogenesis of cerebral vasospasm?
F Cosentino and Z S Katusic

Stroke. 1994;25:904-908
doi: 10.1161/01.STR.25.4.904

Stroke is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1994 American Heart Association, Inc. All rights reserved.
Print ISSN: 0039-2499. Online ISSN: 1524-4628

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://stroke.ahajournals.org/content/25/4/904

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Stroke can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Stroke is online at:
http://stroke.ahajournals.org/subscriptions/