Cardiac Arrhythmia Associated With Reversible Damage to Insula in a Patient With Subarachnoid Hemorrhage

Viktor Svigelj, MD, MSc; Anton Grad, MD, PhD; Igor Tekač, MD, MSc; Tomaz Kiauta, MD, PhD

Background The insular cortex has been shown experimentally to contain an arrhythmogenic center that may play an important role in the genesis of cardiac arrhythmias and electrocardiographic changes in patients with intracranial (eg, cerebrovascular) lesions. The description of our case is intended to substantiate this claim with a clinical observation.

Case Description A 37-year-old woman with subarachnoid hemorrhage suffered a severe reversible cardiac arrhythmia after neurosurgical clipping of an arterial aneurysm and removal of an intracerebral hematoma from the region of the left insula.

Conclusions The observed association of a neurosurgical intervention in the region of the left insular cortex with a cardiac arrhythmia supports but does not prove the suggested role of the insula in the causation of heart rhythm disturbances after stroke. (Stroke. 1994;5:1053-1055.)

Key Words • cerebral cortex • electrocardiograph • arrhythmia • subarachnoid hemorrhage
Stroke Vol 25, No 5 May 1994

Fig 1. Noncontrast computed tomographic image shows left-sided intracerebral hematoma and blood in subarachnoid space.

intraoperative complications were noted, and no intraoperative heart arrhythmias were described in the anesthesia protocol.

In the two ECG recordings taken 2 and 6 hours after surgery, frequent premature ventricular complexes were present (Fig 4). The corrected QT period (QTc) was from 0.42 to 0.44 second.

During the first week after SAH, the patient had no significant complications. Plasma norepinephrine concentrations, determined on days 1, 3, and 7 after SAH, were normal. The patient was discharged 16 days after SAH.

An ECG taken 6 months after SAH showed sinus rhythm, 61 beats per minute, an ST segment elevation in lead V3, and a QTc of 0.38 second.

Discussion

Central autonomic regulation of heart rhythm is complex and not yet sufficiently explained. Recent studies8-10 suggest that the insula might be an arrhythmogenic center. In animal studies Oppenheimer et al11 demonstrated an insular chronotropic organization. It is possible that the completely reversible cardiac arrhythmia in our patient, which developed postoperatively in an electrically somewhat unstable myocardium (as shown by the prolonged QTc) and both appearing and disappearing on the day of the operation, was the result of manipulation of the insular region during the neurosurgical procedure or, in view of the absence of a description of heart arrhythmias in

![Fig 2. Three-vessel angiogram shows a large medial cerebral artery aneurysm (black arrow) and a mild spasm of the left-sided cerebral arteries.](image)

![Fig 3. Sample of a computer-recorded electrocardiographic tracing taken 2 hours after the operation. Note numerous premature ventricular complexes.](image)
the anesthesia protocol, the result of an irritation of this region that developed immediately after the surgical procedure (caused by, for example, a slight superficial bleeding or a delayed effect of the local hemostatic agent oxidized regenerated cellulose [Surgicel]). The normal plasma norepinephrine levels observed in our patient during this period support the suggestion that the insula may be responsible for cardiac arrhythmogenesis in SAH patients through the mechanism of neurogenic sympathetic stimulation of the heart. This is in agreement with our previous study, which demonstrated that ECG changes in SAH patients probably arise independently of elevated plasma norepinephrine levels.

We conclude that the observed temporal coincidence of a surgical intervention in the region of the left insula with a transitory reversible cardiac arrhythmia appears to support the suggested role of the insula in the causation of ECG changes after SAH. The data are insufficient to be taken as proof of a causal relation, however.

References
Cardiac arrhythmia associated with reversible damage to insula in a patients with subarachnoid hemorrhage.
V Svigelj, A Grad, I Tekavcic and T Kiauta

Stroke. 1994;25:1053-1055
doi: 10.1161/01.STR.25.5.1053

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://stroke.ahajournals.org/content/25/5/1053

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Stroke can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Stroke is online at:
http://stroke.ahajournals.org//subscriptions/