Letters to the Editor

Stroke welcomes Letters to the Editor and will publish them, if suitable, as space permits. They should not exceed 1,000 words (excluding references) and may be subject to editing or abridgment. Please submit letters in duplicate, typed double-spaced. Include a fax number for the corresponding author.

Intracerebral Hemorrhage Volume Measurement

We recently demonstrated that the volume of intracerebral hemorrhage, as calculated from the computed tomographic (CT) film using the formula for an ellipsoid, is an accurate and powerful predictor of 30-day mortality following intracerebral hemorrhage.\(^1\)

Since publication of our article in the July 1993 issue of Stroke, we have received several inquiries regarding clarification of our method of volume measurement. The formula for an ellipsoid is \(\frac{4}{3} \pi (a \times b \times c)\), where \(a\), \(b\), and \(c\) represent the respective radii of the intracerebral hemorrhage in three dimensions. Although this formula is relatively simple and easy to use, one of our colleagues, Dr Bill Cahill, has pointed out that the formula for an ellipsoid can be further simplified to \(ABC/2\), where \(A\), \(B\), and \(C\) represent the diameters of the hemorrhage in three directions. The latter formula is essentially equal to \(2\) \(\pi\)/\(3\) \(\times\) \(\text{area of the hemorrhage} \times \text{thickness of the hemorrhage}\) as described by Lisk and colleagues\(^2\).

A recent study by Grotta and colleagues\(^3\) has independently used the formula \(ABC/2\) for estimation of intracerebral hemorrhage volume in another model of outcome following intracerebral hemorrhage. These investigators have also demonstrated the ease and power of this bedside method of volume estimation.

Thus, accurate determination of intracerebral hemorrhage volume can be determined very simply and quickly in the following manner. The CT slice with the largest area of hemorrhage is identified. The longest diameter of the hemorrhage on this slice is measured using the CT measurement scale on the film. The diameter of the hemorrhage that is 90° to the longest diameter represents the second diameter. Finally, the number of 1-cm CT slices on which the hemorrhage is visualized provides the third diameter (eg, a hemorrhage seen on three 1-cm slices would have a diameter of 3 cm). The three diameters are multiplied and then divided by 2 to obtain the volume of intracerebral hemorrhage. This method correlates quite well with a sophisticated but time-consuming planimetric method of volume measurement (\(r=0.94\)), which may be subject to editing or abridgment. Please submit letters in duplicate, typed double-spaced. Include a fax number for the corresponding author.

We are hopeful that the simplicity and accuracy of this method will lead to its frequent use as a bedside predictor of outcome for physicians caring for patients with intracerebral hemorrhage. As Lisk and colleagues\(^2\) suggest, models of outcome using the volume of intracerebral hemorrhage will be critical for patient selection in future randomized surgical trials.

Jose P. Broderick, MD
Thomas G. Brott, MD
stroke Research Center
University of Cincinnati College of Medicine
Cincinnati, Ohio

James C. Grotta, MD
Department of Neurology
University of Texas Medical School
Houston, Tex

References

TCD Velocities and Arterial Pressures in AVM Feeder Vessels

In a carefully performed study,\(^1\) Fleischer etal demonstrated a relationship between cerebral arteriovenous malformation (AVM) feeding mean arterial pressures (FMAP) and parent artery blood flow velocity, measured using transcranial Doppler (TCD). They showed an inverse correlation between FMAP- and TCD-derived velocities, the correlation being closer when peak systolic (\(r=-0.62\)) as opposed to mean velocities (\(r=-0.35\)) were considered. This correlation is perhaps weaker than the authors had initially hoped; thus, it seems that TCD-derived blood velocities in AVM feeder vessels may not be of such powerful prognostic value.

Methodological reasons for the worse-than-expected correlation were discussed, but the authors failed to mention the errors incurred in their TCD measurements not attempting to correct for the angle of insonation of the feeder vessels. The maximum amplitude TCD signal was analyzed and presumably this was thought to relate to an arterial segment whose vector of blood flow was closest to the direction of the ultrasound beam. Assuming angles of under 30° (cosine 30=0.87), the potential error is small (less than 15%).\(^2\) However, at larger angles the error in perceived velocity increases disproportionately. In patients with AVMs, it is our experience (from studies using transcranial color-coded sonography and magnetic resonance angiography) that the anatomy can be distorted with tortuosity of the feeder vessels, which may run at greater angles to the ultrasound beam. In addition, the anterior and posterior cerebral arteries run at greater angles than the middle cerebral artery, and determination of "true" blood flow velocities in these vessels should incorporate a correction for the insonation angle.\(^3\) Because the authors measured the angiographic diameter of the feeder vessels at the point of insonation, they may also be able to measure the angle of the insonated arterial segment to the presumed path of the ultrasound beam. Thus, reanalysis of their data to include a correction for the insonation angle may yield a closer relationship between FMAP and the TCD-derived blood flow velocities.

P.J. Martin, MA, MRCP
Department of Neurology
M.E. Gaunt, FRCS
Department of Surgery
Leicester Royal Infirmary
Leicester, UK

References

Response

We thank Martin and Gaunt for their constructive and insightful comments regarding an important possible source of error in
Intracerebral hemorrhage volume measurement.
J P Broderick, T G Brott and J C Grotta

Stroke. 1994;25:1081
doi: 10.1161/01.STR.25.5.1081.b
Stroke is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1994 American Heart Association, Inc. All rights reserved.
Print ISSN: 0039-2499. Online ISSN: 1524-4628

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://stroke.ahajournals.org/content/25/5/1081.2.citation

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Stroke can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Stroke is online at:
http://stroke.ahajournals.org/subscriptions/