Pattern of Activation of the Hypothalamic-Pituitary-Adrenal Axis in Acute Stroke
Relation to Acute Confusional State, Extent of Brain Damage, and Clinical Outcome

Klaus Fassbender, MD; Roland Schmidt, MD; Rainald Mönner, MD; Michael Daffertshofer, MD; Michael Hennerici, MD

Background and Purpose The aim of this study was to characterize the response of the hypothalamic-pituitary-adrenal system in the first hours of ischemic stroke and to relate its extent to the occurrence of acute confusional state, volume of brain damage, and clinical outcome.

Methods The secretion of corticotropin (adrenocorticotropic hormone [ACTH]) and cortisol was studied in 23 patients by determinations at hours 4, 6, 8, 10, and 14 and days 1, 3, 5, and 7 after onset of symptoms. Acute confusional state (DSM-III-R criteria), extent of lesion (volumetry of computed tomographic scans), and neurological and functional outcome (Scandinavian Stroke Scale, Barthel Index scores) were assessed.

Results The massive neuroendocrine response observed consisted of an initial phase with concomitantly increased levels of ACTH and cortisol and a second phase with decreased levels of ACTH while high concentrations of cortisol persisted. Initial levels of ACTH but not cortisol were significantly increased in patients with acute confusional state and significantly correlated with volume of brain lesion and neurological and functional outcome.

Conclusions An early and persisting activation of the hypothalamic-pituitary-adrenal axis was observed in relation to severity of disease. Its characteristic biphasic pattern suggests an initial central stimulation of release of ACTH followed by feedback suppression concomitant with an increased susceptibility of the adrenal gland. Because these hormones are known to exacerbate hypoxic injury to neurons, their massive release in hyperacute stroke may increase the extent of brain damage. (Stroke. 1994;25:1105-1108.)

Key Words • hypothalamic-pituitary-adrenal axis • cerebral ischemia • confusion

Infection, trauma, or mental stress results in an increase in levels of cortisol. Increased concentrations of cortisol and a failure of the normal suppression of cortisol levels by dexamethasone have also been observed in acute stroke.

A number of studies have demonstrated the neurotoxicity of cortisol, suggesting that strong activation of the hypothalamic-pituitary-adrenal (HPA) axis may be an aggravating factor in acute cerebral ischemia. Increased plasma and urinary cortisol levels after stroke have been found to be associated with a high mortality rate and poor functional outcome. Moreover, hypercortisolism in reaction to various types of stress has recently been related to acute confusional state, which is a common symptom in acute stroke, and hypercortisolism has been reported mainly in disoriented stroke patients.

However, the response of the HPA system in the important hyperacute phase of ischemic stroke has not yet been characterized. In this study the levels of these rapidly secreted and metabolized hormones are closely monitored in acute stroke beginning 4 hours after onset of symptoms; they are related to the occurrence of acute confusional state, volume of brain damage, and outcome of disease.

Subjects and Methods

In this study 23 patients (12 women, 11 men) aged 39 to 89 years (median, 72 years) were included within 4 hours after onset of the first symptoms of acute ischemic stroke. Nineteen patients had stroke in the carotid and 4 in the vertebrobasilar arterial territory. The diagnostic subgroups were large-vessel occlusive disease (n=5), cardiogenic disease (n=8), lacunar disease (n=4), and other or unknown (n=6). History, clinical examinations, computed tomographic (CT) scans, chest roentgenograms, electrocardiography, extensive laboratory workup, and daily follow-up were performed for diagnosis and to exclude patients with other causes of activation of the HPA axis (eg, those with surgical procedures within the last 3 weeks or those with concomitant preexisting or nosocomial infections). Patients receiving immunosuppressive agents, all types of steroids, and psychotropic drugs were excluded. One patient died at day 5. Standard therapy consisted of intravenous heparin (n=12) and low-dose subcutaneous heparin (n=11). The neurological and functional deficits were determined at day 1 and between the second or third week, according to standard criteria (Scandinavian Stroke Scale and Barthel Index). Acute confusional state (ACS) based on the criteria of the Diagnostic and Statistical Manual of Mental Disorders,
edition 3, revised (DSM-III-R) for delirium was diagnosed from history, initial examination, and observation during the first days of hospitalization.

Determination of Volume and Location of Brain Damage

Computed tomographic scans were obtained at admission to show preexisting lesions and between days 3 and 14 to demonstrate the final lesion due to the present disease. The size of the brain lesion was quantified by two neurologists (R.M. and M.D.), who were blinded with regard to the clinical and neuroendocrinological data. The lesion area of the CT slices was manually determined; regarding slice thickness, the lesion volume was calculated using a computer-assisted planimetry algorithm. The measurements included all actual lesions but excluded older lesions. Additionally, the location of cerebral infarcts was determined.

Hormone Analyses

Venous blood samples for quantification of corticotropin (adrenocorticotropic hormone [ACTH]) and cortisol were collected from a venous catheter in precooled ethylenediaminetetraacetic acid (EDTA) tubes at hours 4, 6, 8, 10, and 14 and at days 1, 3, 5, and 7 (at 8 AM). Centrifuged (5 minutes, 4°C, 3000 rpm), and stored at −80°C until used. All samples from an individual patient were measured in duplicate in a single assay to eliminate interassay variations. The LUMITest ACTH (Henning) is an immunoluminometric two-step assay for the determination of intact human ACTH in EDTA/plasma. Two monoclonal antibodies, one luminometric-labeled and the other immobilized on the inner surface of the tube, recognize different binding sites on ACTH to form a sandwich-type complex bound to the tube. The luminescence signal is directly proportional to the ACTH concentration. The normal range of ACTH is 10 to 60 pg/mL for 8 to 10 AM and 6 to 30 pg/mL for 8 to 10 PM. The limit of detection is 0.6 pg/mL. The measured intra-assay and interassay coefficients of variation were 4.8% and 9.8%, respectively. In the Enzymun-Test Cortisol (Boehringer), serum cortisol and cortisol-peroxidase conjugate compete in the first incubation step for a limited quantity of specific antibodies coated onto the tube walls. The amount of antibody-cortisol-peroxidase complex, detected by the formation of a colored complex, is a measure of the cortisol content of the sample. The normal range is 260 to 700 nmol/L for 8 to 9 AM and 100 to 250 nmol/L for 8 to 10 PM. The detection limit was 30 nmol/L. The intra-assay and interassay coefficients of variation were less than 8% and 12%, respectively.

Statistical Analysis

Results are expressed as mean±SEM. For statistical analysis, the Wilcoxon matched-rank test, the Mann-Whitney U test, and Spearman's rank correlation were used.

Results

Pattern of Release of ACTH and Cortisol

Concentrations of ACTH levels at hours 4 and 6 were significantly increased compared with levels at day 3 (P<.005 and P<.0005, respectively), day 5 (P<.01 and P<.005, respectively), and day 7 (P<.005 and P<.001, respectively) (Fig 1). Levels of cortisol also showed a strong increase, which, however, remained persistently elevated until day 5 (Fig 1). Compared with those at day 7, concentrations were significantly increased at hour 4 (P<.05), hour 6 (P<.005), hour 8 (P<.05), hour 10 (P<.005), hour 14 (P<.01), day 1 (P<.001), and day 3 (P<.01). Concentrations of hormones did not differ at any time in regard to sex and did not significantly correlate with age (data not shown).

Acute Confusional State

Nine of the 23 patients studied (39%) exhibited ACS. These patients showed significantly increased levels of ACTH at hour 4 (102.6±37.37 pg/mL) compared with those without this mental disorder (36.11±10.23 pg/mL, P<.05). Furthermore, the maximal ACTH levels of patients with (125.23±35.35 pg/mL) and without (52.74±8.33 pg/mL) ACS significantly differed (P<.05). In contrast, neither cortisol levels at any time studied nor maximal cortisol levels differed significantly in either group.

Neurological and Functional Deficits at Admission and Follow-up (Outcome)

At hour 4, but not later, concentrations of both ACTH and cortisol correlated significantly with the scores of the initial neurological examination (Scandi-
Patients with infarctions in the carotid territory with lesions >2 cm³ (n=13) compared with those with lesions <2 cm³ (n=10) had levels of ACTH at hour 4 that significantly correlated with functional scores (Barthel Index) at admission (r=−.74, P<.05), and only concentrations of ACTH at hour 4 correlated with neurological (r=−.71, P<.05) and functional (r=−.75, P<.05) outcome. Maximal concentrations of ACTH but not of cortisol were correlated with initial Barthel Index scores (r=−.75, P<.05) as well as with neurological (r=−.81, P<.05) and functional (r=−.74, P<.05) outcome.

Relation to Extent and Location of Brain Damage

Levels of ACTH at hour 4 and the patients’ maximal ACTH levels correlated significantly with the volume of brain lesion (r=−.67, P<.05 and r=−.60, P<.05, respectively). There was a significant difference of levels of ACTH in patients with lesions >2 cm³ (n=13) compared with those with lesions ≤2 cm³ (n=10) at hour 4 (P<.005) and at hour 6 (P<.01) (Fig 2). Similarly, maximal concentrations of ACTH significantly differed in these subgroups (111.08±25.37 pg/mL versus 44.72±7.02 pg/mL, P<.01). However, concentrations of cortisol did not significantly differ in regard to volume of brain damage at any time studied.

Patients with infarctions in the carotid territory with involvement of the left (n=9) or right (n=10) hemisphere did not exhibit significantly different concentrations of hormones. None of the patients had lesions of the hypophysis. Values of cortisol or ACTH did not significantly differ in patients with (n=8) or without (n=15) a lesion of the hippocampus (data not shown).

Discussion

Serial measurements in the hyperacute phase of stroke demonstrated an early and massive activation of the HPA axis in response to ischemic stroke. A characteristic biphasic pattern of response was observed: initially, concentrations of ACTH and cortisol were concomitantly increased; in a second phase, despite a rapid decrease of ACTH levels, concentrations of cortisol remained increased. This pattern may be explained by an initially central activation of the HPA axis followed by a strong cortisol-induced suppression of ACTH levels concomitant with an increased susceptibility of the adrenal gland, thereby maintaining the elevated cortisol levels. Interestingly, a hyperresponse of the adrenal gland to ACTH has recently been shown in the early postoperative recovery period.

Both the strong adrenal response in the absence of the parallel increase of ACTH and the relation to the extent of brain damage may also be explained by the action of other factors, such as proinflammatory cytokines, which are released in most types of tissue injury and possess a strong corticotropin-releasing hormone or ACTH-like activity.

Initial levels of ACTH were significantly increased in patients with ACS, which is consistent with earlier studies showing a relation between activation of the HPA axis and the occurrence of ACS. In this study, however, cortisol levels were not different in either group of patients. Similarly, only levels of ACTH at hour 4 but not later, were related to the volume of brain lesions and to scores of neurological and functional outcome. The observation that levels of ACTH but not cortisol were related to mental disorders, extent of brain damage, and outcome may indicate a central stress-induced activation of the HPA system, inducing secretion of ACTH more directly and earlier than that of cortisol as the most distal member of the HPA axis.

In this study no specific location of brain lesion responsible for dysregulation of the HPA axis in stroke could be identified. In particular, patients with or without lesions of the hippocampus, which is known to exert an inhibitory action on this neuroendocrine regulation, did not differ in regard to response of the HPA axis.

It cannot be excluded that these hormones, once released, secondarily reinforce damage of hypoxic brain tissue and thereby contribute to the cognitive disturbances. The concept of neurotoxicity of hormones of the HPA axis has been established by many in vitro and in vivo studies, which clearly show that glucocorticoids exacerbate hypoxic injury to neurons and astrocytes and impair glucose uptake and metabolism in the brain.

In conclusion, this kinetic study showed a strong activation of the HPA axis in hyperacute stroke with a characteristic biphasic pattern. Whereas the close relation of the severity of disease and volume of brain damage to initial ACTH levels indicates an early central induction of the HPA axis by cerebral ischemia, it still remains to be shown whether the persisting release of these hormones modulates the disease course.

Acknowledgment

The editorial assistance of J. Thompson is gratefully acknowledged.
References

 Baillieres Clin Endocrinol Metab. 1987;1:319-354.
2. Oka M. Effect of cerebral vascular accident on the levels of
 17-hydroxyprogesterone in plasma. Acta Med Scand. 1956;156:
 221-226.
3. Feibel JH, Hardy PM, Campell RG, Goldstein MN, Joynt RJ.
 Prognostic value of the stress response following stroke.
4. Olsson T, Aström M, Ericson S, Forssell A. Hypercortisolism
 revealed by the dexamethasone suppression test in patients with
5. Sapolsky RM, Pulsinelli WA. Glucocorticoids potentiate ischemic
 injury to neurons: therapeutic implications. Science. 1985;229:
 1397-1400.
6. Sapolsky RM. Glucocorticoids, hippocampal damage, and the glu-
7. Tombaugh GC, Yang SH, Swanson RA, Sapolsky RM. Glucocor-
 ticoids exacerbate hypoxic and hypoglycemic hippocampal injury in
8. Virgin CE Jr, Ha TP, Pachan DR, Tombaugh GC, Yang SH,
 Horner HC, Sapolsky RM. Glucocorticoids inhibit glucose transport
 and glutamate uptake in hippocampal astrocytes: implications
 for glucocorticoid neurotoxicity. J Neurochem. 1991;57:
 1422-1428.
9. Olsson T. Urinary free cortisol excretion shortly after ischemic
10. Gurevich D, Siegel B, Dumlao M, Perl E, Chaitin P, Bagne C,
 Horner HC, Packan DR, Sapolsky RM. Glucocorticoids inhibit glucocor-
 ticoid secretion by the hippocampal formation in the primate.
11. Olsson T, Marklund N, Gustavson Y, Nåsman B. Abnormalities at
 different levels of the hypothalamic-pituitary-adrenal axis early
12. Carpenter WT, Gruen PH. Cortisol's effect on human mental
13. Kraal VA. Stress and mental disorders of the senium.
 Psychiatrie. 1990;14:297-308.
15. Mori E, Yamadori A. Acute confusional state and acute agitated
 confusional states (delirium) in stroke patients. Cerebrovasc Dis.
17. Scandinavian Stroke Study Group: Multicenter trial of hemodi-
 lution in ischemic stroke: background and study protocol. Stroke.
18. Mahoney FI, Barthel DW. Functional evaluation: the Barthel
19. American Psychiatric Association. Diagnostic and Statistical
 Manual of Mental Disorders. 3rd ed, revised. Washington, DC:
20. Kretschmann HJ, Weinrich W. Neuroanatomy and Computed
 Evaluation of a sensitive radioimmunoaassay of plasma corti-
22. Tunn S, Pappert G, Willnow P, Krieg M. Multicentre evaluation of
 an enzyme-immunoaassay for cortisol determination. J Clin
23. Udelsman R, Norton JA, Jelenich SE, Goldstein DS, Linehan
 WM, Loriaux DL, Chrousos GP. Responses of the hypothalamic-
 pituitary-adrenal and renin-angiotensin axes and the sympathic
 system during controlled surgical and anesthetic stress. J Clin
 Endocrinol Metab. 1987;64:986-994.
24. Fassbender K, Parger H, Müller W, Zimmerli W. Interleukin-6
 and concentrations of acute phase proteins in surgical patients:
 diagnostic signs of nosocomial infections. Crit Care Med. 1993;21:
 1175-1180.
 Corticotropin-releasing activity of monokines. Science. 1985;230:
 1035-1037.
27. Lyson K, McCann SM. The effect of interleukin-6 on pituitary
 cortex and concentrations of acute phase proteins in surgical patients:
 diagnostic signs of nosocomial infections. Crit Care Med. 1993;21:
 1175-1180.
28. Sapolsky RM, Zola-Morgan S, Squire LR. Inhibition of glucocor-
 ticoid secretion by the hippocampal formation in the primate.
29. Kadekaro M, Ito M, Gross PM. Local cerebral glucose utilization
30. Horner HC, Packan DR, Sapolsky RM. Glucocorticoids inhibit
 glucose transport in cultured hippocampal neurons and glia. Neu-
 roendocrinology. 1990;32:57-64.
Pattern of activation of the hypothalamic-pituitary-adrenal axis in acute stroke. Relation to acute confusional state, extent of brain damage, and clinical outcome.
K Fassbender, R Schmidt, R Mössner, M Daffertshofer and M Hennerici

Stroke. 1994;25:1105-1108
doi: 10.1161/01.STR.25.6.1105

Stroke is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1994 American Heart Association, Inc. All rights reserved.
Print ISSN: 0039-2499. Online ISSN: 1524-4628

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://stroke.ahajournals.org/content/25/6/1105

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in *Stroke* can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to *Stroke* is online at:
http://stroke.ahajournals.org/subscriptions/