Chimowitz et al refer to preliminary data suggesting increased fibrinogen in patients with SEC. We have shown that fibrinogen is an independent risk factor for left atrial SEC in patients with nonvalvular atrial fibrillation and that both fibrinogen and SEC are independently associated with embolic events. The relationship between SEC and embolism therefore appears complex, comprising both hemostatic and hemodynamic abnormalities and both cardioembolic and other mechanisms of stroke.

Ian W. Black, MBBS, FRACP
Department of Cardiology
The Cleveland Clinic Foundation
Cleveland, Ohio

References

Response
In a prospective study, groups of patients with and without a particular risk factor are followed over time to determine the rates at which they develop a specific disease. Neither our study nor the one by Black et al followed patients with and without SEC to determine their rates of cerebral or systemic embolism. In both studies only embolic events that occurred before identification of SEC were documented. As such, neither of these studies provides a prospective evaluation of the embolic risk posed by SEC. The fact that patients were identified for the study by Black et al at the time of transesophageal echocardiography rather than by review of the echocardiography reports is not a sufficient condition to ensure a prospective study.

The recent studies on SEC by Black et al that are referenced in their letter are of considerable interest. We look forward to a prospective study of the embolic risk associated with SEC.

R. Michael Poole, MD
Department of Neurology
Rochester General Hospital
Rochester, NY
Marc I. Chimowitz, MBChB
Department of Neurology
University of Michigan Medical Center
Ann Arbor, Mich

References

Flow and Velocity During Autoregulation Testing in Humans

To the Editor:

It may be unusual to write a letter to the editor referring to an abstract rather than to an original publication. Nevertheless, the summary of the paper read by Newell et al at the 19th International Joint Conference on Stroke and Cerebral Circulation and published in the January issue of Stroke appears to need some comment.

Newell et al measured the percent changes of middle cerebral artery (MCA) velocity by transcranial Doppler sonography and those of internal carotid artery (ICA) flow by electromagnetic flowmetry in seven patients who had undergone carotid endarterectomy. In these patients a drop in arterial blood pressure (ABP) was induced by deflating leg cuffs after 3 minutes of inflation to suprasystolic pressure. From the evidence of identical curves for MCA velocity and ICA flow, Newell et al concluded that changes in time-averaged MCA velocity accurately reflect the changes in ICA flow during autoregulation. This may be true in cases in which autoregulatory dilatation is limited to the small cerebral arteries and does not include the trunks of the basal arteries.

In our own experience, using a type of Doppler signal analysis that includes the measurement of signal power as a function of vessel caliber, there was clear evidence that the middle cerebral artery trunk is included in autoregulatory vasodilation both in orthostasis and lower body negative pressure tests of autoregulation. The same effect can be observed when using the leg cuff technique described by Newell et al for producing a fall in ABP.

Our Figs 1 and 2 show two typical examples in healthy volunteers. In Fig 1, an increase in signal power (I) following the fall of ABP with velocity (v) decreasing can be seen. The product FI of p and v, indicating volume flow, remains constant. In the example shown in Fig 2, v remains around 100% despite p indicating an increase in vessel caliber. Logically, FI as well increases in this case after the fall in ABP. We view this effect as attributable to an increase in the caliber of the small arteries of the MCA tree in addition to the arterial trunk.

In the abstract of Newell et al, Fig 2 is difficult to interpret. With no clinical comments given regarding carotid stenosis in the case demonstrated, it is entirely possible that there was no autoregulation in the early phase demonstrated on the graph and that the MCA velocity therefore indicates volume flow. Notice, however, that the analysis includes barely one third of a minute during which the MCA velocity and ICA flow returned to normal. Their further evolution, and whether this even included increased flow, cannot be established from the graph.

Fig. 1. Printout of Doppler signal analysis in a human volunteer examined with the transcranial Doppler leg-cuff test.
References


Silent Brain Infarct in Thrombotic Thrombocytopenic Purpura

To the Editor:

Rinkel and colleagues1 have recently reported magnetic resonance imaging (MRI) abnormalities in relapsing thrombotic thrombocytopenic purpura (TTP). In reviewing the literature, only two case reports of MRI findings of ischemic infarcts have been described since.2,3

The pathogenesis of the neurological manifestations remains incompletely understood, but MRI scans in TTP may provide more insight into the possible mechanisms that are responsible for the neurological manifestations. An additional patient with TTP but with a silent brain infarct detected on serial MRI is described. A 38-year-old executive from Brazil had an infarct in the ferrolateral myocardial infarction in 1992. Results from a subsequent coronary angiogram were normal. A few months later while in his office, he suddenly experienced double vision, left hemiparesis, and difficulty finding words. On admission to another hospital, neurological examination was remarkable for normal visual acuity and normal visual fields, but a rotary nystagmus, an impaired down-gaze, and a left hemiparesis and hypesthesia were found. Laboratory investigation showed a total platelet count of 24000 and schistocytes on blood smear. Anticardiolipin antibody titer was negative. Renal function tests were normal. MRI imaging showed a right thalamic infarct and scattered small infarcts in the cerebellum (Figure). He was treated with heparin, and he recovered with persistent diplopia and spastic left hemiparesis.

The patient remained asymptomatic for 8 months but continued to have low total platelet counts without evidence of a hemolytic anemia. A repeat MRI scan, however, showed a new occipital infarct that could not be detected on neurological examination. Three months after the second brain MRI, he developed brief episodes of left-hand numbness and word-finding difficulty. Computed tomographic (CT) scan was unremarkable, but MRI was not repeated. He was lost to follow-up after hospital discharge following one series of plasma exchange.

TTP is a source of considerable morbidity in young adults. The clinical entity is often characterized by a pentad of thrombocytopenia, hemolytic anemia, fever, renal failure, and neurologic findings.1 Neurological manifestations are often a feature of this unusual disease and punctuate the clinical course with a variable degree of central nervous system involvement.2 Fluctuating confusional states and rapid progression to unresponsive coma dramatically responds to one series of plasma exchange without, in general, visible permanent damage on imaging studies.

The underlying pathophysiologic events in TTP have been debated since its original account. The universal histopathologic findings are characterized by hyaline thrombi formed by the agglutination of thrombocytes, mostly in small arterioles and capillaries. Mural or extravascular inflammation is typically absent. Abnormalities in the depolymerization of von Willebrand factor...
Flow and velocity during autoregulation testing in humans.

H R Müller

Stroke. 1994;25:1296-1297
doi: 10.1161/01.STR.25.6.1296

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://stroke.ahajournals.org/content/25/6/1296.citation

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Stroke can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Stroke is online at:
http://stroke.ahajournals.org/subscriptions/