Case Report

Bilateral Occipital Infarctions Associated With Carotid Stenosis in a Patient With Persistent Trigeminal Artery

Andrew P. Gasecki, MD; Allan J. Fox, MD; Louise H. Lebrun, MD; Nicole Daneault, MD; for the Collaborators of the North American Carotid Endarterectomy Trial (NASCET)

Background. Embolization via a persistent trigeminal artery, one of the embryonic vascular connections that may persist between the carotid and basilar arteries, is an unusual occurrence.

Case Description. We describe a 76-year-old man with bilateral occipital infarctions presumably related to an ulcerated left carotid stenosis. Clinically, a left inferior homonymous quadrantanopia was present.

A persistent trigeminal artery is a rare vascular anastomosis between the carotid and basilar territories but is the most common of the primitive persistent carotid-basilar connections. Ulcerative atheromatous changes at the carotid bifurcation have been implicated as a potential source for microemboli passing through the trigeminal artery to the basilar artery and resulting in symptoms in the posterior circulation territory. Previously reported cases of transient vertebrobasilar symptoms related to carotid disease in patients with trigeminal arteries were determined on a clinical basis; none were confirmed radiologically. This report documents occipital infarctions due to presumed emboli from a severe extracranial carotid lesion through a persistent trigeminal artery. Clinical implications for prevention of stroke in the distal basilar circulation are discussed.

Case Report

A 76-year-old right-handed white man with a history of hypertension suddenly developed a left-sided headache and left lower field visual loss that persisted. Two months later he had a similar headache but with transient (15 to 20 minutes) right hemifield bright lights, during which he was unable to read the end of lines. He had no focal motor, sensory, or coordination symptoms with these episodes. Subsequently, the patient was placed on aspirin and referred to the Hopital Saint-Luc for further investigations. His blood pressure was well controlled on antihypertensive medications.

Physical examination revealed a left inferior homonymous quadrantanopia confirmed by visual field charting. The remainder of the neurological examination was normal. The blood pressure was normal (120/80 mm Hg in both arms), the heart rate regular (68 beats per minute), and the patient had no carotid, supraclavicular, or orbital bruit or cardiac murmur.

A computed tomographic scan showed right parieto-occipital and left occipital infarction (Fig 1). Echocardiography, done without bubble contrast via a subxiphoid approach, and electrocardiogram were within normal limits. Selective carotid angiogram revealed 14% right and 47% left internal carotid stenosis. The left trigeminal artery (Fig 2), supplying both posterior cerebral arteries, was rising from the left internal carotid artery. Vertebral angiography confirmed that the proximal basilar artery was hypoplastic compared with the basilar artery beyond the trigeminal. There was no proximal atherosclerotic lesion related to the vertebrobasilar system or the aortic arch, which showed only minimal atherosclerotic irregularities without any stenosis of the vessels rising from it. The right vertebral artery was hypoplastic. Ultrasound revealed antegrade flow in both vertebral arteries.

The patient was maintained on warfarin for 8 months and subsequently on ticlopidine for 8 months. After 16 months of follow-up, he developed recurrent episodes of left-hand weakness. A second angiogram showed a 73% right internal carotid stenosis (Fig 3, left panel) and a 70% left internal carotid stenosis (Fig 3, right panel). Because the results of the North American Symptomatic Carotid Endarterectomy Trial had deter-
mended benefit for symptomatic patients with severe (>70%) stenosis, he underwent right carotid endarterectomy and, a month later, left carotid surgery, both without complications. Intraluminal shunts were used during both surgeries.

Discussion
Occipital ischemia due to microembolization is usually caused by vertebrobasilar anomalies. Occasionally it has been described in conjunction with a fetal origin of the carotid portion of the posterior cerebral artery.\(^7\)\(^8\) In our patient, the bilaterality of infarcts documented on the computed tomographic scan of the brain was expliable by probable embolization from the extracranial carotid artery via a persistent trigeminal artery. A direct connection between the carotid and basilar arteries through the trigeminal artery effectively replaced the terminal territory of supply of the basilar artery through the posterior cerebral arteries to both occipital lobes.

The trigeminal artery is the most common persistent carotid-basilar anastomosis observed in adult life. The reported angiographic frequency of the trigeminal artery is estimated at between 0.02% and 1.25%\(^9\)\(^-\)\(^16\) but may be as high as 4% in mentally retarded patients.\(^17\) The trigeminal artery has been associated with aneurysms,\(^11\)\(^-\)\(^13\)\(^-\)\(^18\)\(^-\)\(^20\) arteriovenous malformations,\(^19\) cavernous sinus fistula,\(^21\)\(^-\)\(^22\) moyamoya disease,\(^23\) anomalies of origin of the cerebellar arteries,\(^24\) and agenesis or occlusion of the internal carotid artery.\(^25\)

Few reports relate the symptoms of vertebrobasilar ischemia to atherosclerotic changes at the carotid bifurcation, suggesting a link between carotid disease, vertebrobasilar symptoms, and the trigeminal artery. Waller et al\(^4\) first implicated extracranial carotid disease as a possible source of emboli to the posterior circulation through the persistent trigeminal artery. Internuclear opthalmoplegia,\(^26\) transient bilateral cortical blindness,\(^1\)\(^-\)\(^2\) recurrent pontine hemorrhages,\(^27\) recurrent infarctions of the brain stem,\(^28\)\(^-\)\(^29\) and recurrent transient ischemic attacks in the vertebrobasilar territory\(^3\)\(^-\)\(^5\) have been reported to be associated with persistent trigeminal artery.

The trigeminal artery appears in the 3-mm embryo, rises from the internal carotid artery, and supplies the precursors of the basilar artery (longitudinal neural arteries). Therefore, it forms the major blood supply to the posterior circulation structures until the 14-mm fetal stage, when it regresses. The posterior cerebral and posterior communicating arteries take over its function to carry the blood flowing from the distal end of the basilar artery. If it persists into adult life, the trigeminal artery is a somewhat tortuous artery coming off the cavernous portion of the internal carotid artery. It courses posteriorly, beneath or above the abducens...
nerve, and then medially to the trigeminal ganglion to join the basilar artery between the superior and anterior inferior cerebellar arteries. There is no clinical syndrome specifically correlated to the existence of a trigeminal artery. The close proximity to the cavernous sinus structures may result in signs of cranial nerve dysfunction (oculomotor, trigeminal, trochlear, and abducens palsies). This vessel may be at risk during gasserian ganglion surgery and has been implicated as a possible cause of trigeminal neuralgia. The only reported case of inadvertent occlusion of the trigeminal artery resulted in transient ophthalmoplegia and facial hypesthesia and permanent sixth nerve paresis, which were related in part to intraoperative manipulation and bleeding. Symptomatic moderate carotid stenosis, with which this patient initially presented, is currently under close scrutiny. Benefit of endarterectomy was shown only for severe carotid stenosis, and our patient underwent bilateral endarterectomies when the stenoses, associated with bilateral symptoms, reached severe degrees (70% and 73%).

Anomalous anastomoses between the carotid and the usual posterior territory usually can be shown on both conventional and magnetic resonance angiography and should be considered in the differential diagnosis of vertebrobasilar stroke. A trigeminal artery would be overlooked by carotid ultrasound techniques. Magnetic resonance angiography was shown by Schuierer et al to identify the trigeminal artery in a noninvasive manner. This technology, when fully developed and available, will become the investigation of choice for this anomaly. In the meantime, patients with vertebrobasilar stroke should undergo adequate intracranial imaging by conventional arteriography so as not to overlook the presence of a persistent trigeminal artery. While anomalies such as this are uncommon, the results of carotid endarterectomy for severe stenosis in preventing future stroke are compelling and far more successful than available therapies for vertebrobasilar stroke. Identification of this lesion in the presence of severe carotid stenosis points to the need for carotid endarterectomy to prevent stroke in the distal basilar circulation. The risk of serious stroke as a result of overlooking severe carotid stenosis in the possible presence of this anomaly justifies conventional intracranial arteriography. The benefit obtained from surgery in patients with severe (≥70%) stenosis outweighs the 0.5% to 1% risk of arteriography.

References

Bilateral occipital infarctions associated with carotid stenosis in a patient with persistent trigeminal artery. The Collaborators of the North American Carotid Endarterectomy Trial (NASCET).
A P Gasecki, A J Fox, L H Lebrun and N Daneault

Stroke. 1994;25:1520-1523
doi: 10.1161/01.STR.25.7.1520

Stroke is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1994 American Heart Association, Inc. All rights reserved.
Print ISSN: 0039-2499. Online ISSN: 1524-4628

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://stroke.ahajournals.org/content/25/7/1520

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in *Stroke* can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to *Stroke* is online at:
http://stroke.ahajournals.org//subscriptions/