NASCET and ECST: Identifying Clinically Relevant Carotid Disease

In their recent editorial, Drs Ackerman and Candia state: “The North American Symptomatic Carotid Endarterectomy Trial (NASCET) has convinced skeptics that identifying and operating on appropriately severe common carotid bifurcation lesions can lead to a risk reduction for stroke.”

As one of the Co-Principal Investigators in NASCET, I write to point out that the European Carotid Surgery Trial (ECST), which began before NASCET and has worked with us in an unselfish, international collaboration, shares the credit for convincing skeptics about the efficacy of endarterectomy in high-grade symptomatic carotid stenosis.

Although their method for measuring stenosis differs from ours, their pioneering effort should be recognized in establishing the benefits of this procedure.

David L. Sackett, FRSC, MD, FRCP
Departments of Medicine and Clinical Epidemiology
McMaster University
Hamilton, Ontario, Canada

References


Doppler Ultrasound Measurement of Cerebral Blood Flow

The recent attempt by Schöning et al to measure cerebral blood flow by using duplex ultrasound is a timely reminder of the many limitations of this technique. We feel, however, that their article fails to acknowledge how great the errors in their measurements really are.

As the authors note, even minor errors in the measurement of lumen diameter or blood-flow velocity can result in large errors in the calculation of flow volume. For example, the stated 4.1-mm diameter of the external carotid artery is likely to be measured from the ultrasound image with an absolute precision of only ±1 mm (not the 0.1 mm assumed by the authors). This factor alone induces an error of ±50% in the flow value.

The Doppler angle measurement made by the authors assumes that flow is parallel to the vessel wall. In fact, the “off axis” angle of carotid flow is known to be approximately 20° at the origin of the ICA. The consequent error is dependent on Doppler angle, which yields the functional size of the lumen as well as total flow. Yet it is precisely this measurement that is used clinically. It would therefore not be possible to calculate with any relevant accuracy the pressure gradient across a carotid stenosis or to provide accurate serial assessment of changes in arterial flow in patients with brain trauma or subarachnoid hemorrhage.

Although the calculation of volume flow by duplex subject to more than just “minor errors,” several new developments have occurred that may provide the solution to these technical problems. These include “time domain” methods that track the acoustic speckle patterns from moving blood (giving a velocity profile that yields the functional size of the lumen as well as total flow) and “attenuation-compensated” methods in which the volume of blood is measured directly from the back-scattered Doppler signal itself (thus eliminating the need to measure lumen size or even Doppler angle). The sooner we are able to take advantage of these direct methods, the greater will be our clinical understanding of the complexities of cerebral blood flow.

C. F. Bladin, FRACP
Stroke Research Unit
P. N. Burns, PhD
Department of Clinical Biophysics
University of Toronto
Toronto, Canada

References

Doppler ultrasound measurement of cerebral blood flow.
C F Bladin and P N Burns

Stroke. 1994;25:1524-1525
doi: 10.1161/01.STR.25.7.1524

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://stroke.ahajournals.org/content/25/7/1524.citation

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Stroke can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Stroke is online at:
http://stroke.ahajournals.org/subscriptions/