References

Response
We thank Drs Hart, Halperin, and Miller and Ms Pearce for their interest in our article on the factors associated with the failure of aspirin treatment after stroke.

Unfortunately, the small sample size of patients with atrial fibrillation does not allow us to further stratify the patients to perform multivariate analysis (Cox proportional hazards model). As for the second point, we indeed found that ischemic heart disease is a significant risk factor for aspirin failure, since even after Bonferroni correction the odds ratio for this risk factor remain statistically significant.

T.A. Treves, MD
N.M. Bornstein, MD
Department of Neurology
Tel Aviv Medical Center
Tel Aviv, Israel

Neurobiology of Passive Avoidance Impairment After Ischemia
Karasawa et al report that passive avoidance impairment after ischemia is related to damage of CA1 neurons of the hippocampus related to memory and habituation. The neurobiology is suggested by the release of dopamine1 lateralized to the right hemisphere2 subserving passive avoidance.3 This hypothesis is supported by optimal response organization at intermediate dopamine tone in a medial-frontal-striatal activation system2 and by operant conditioning of CA1 bursting at different concentrations of dopamine, showing a sharp peak at 1 mM and falling abruptly when this optimal concentration was either halved or doubled.4 The fact that delay-dependent speeding of reaction time, indicating motor readiness, is abolished by depletion of dopamine subserving mood prompts the evaluation of ischemia-induced behavioral changes by monitoring behavioral correlates of mood, ie, speech hesitation and switching pauses.5 This method is supported by the contribution of articulatory rehearsal to short-term memory6 and by the association of >2-second speech pauses with prearticulatory repair6 and competitive and courtship activity.2 These findings suggest a causal relationship between impairment in passive avoidance and neuronal damage in the hippocampus,8 thus tending to confirm powerful isomorphisms between mind and body and the existence of deep and lawful mental structures governing human cognitive and emotional functioning reflecting properties of neuronal activity and firing.9

Ernest H. Friedman, MD
Departments of Medicine and Psychiatry
School of Medicine
Case Western Reserve University
Cleveland, Ohio

References

Experimental Stroke Treatment With High-Dose Methylprednisolone
We read with interest the recent article by de Courten-Myers et al.1 There are several parallels between this study and a study we recently published.2 Because ischemia is a primary pathophysiological mechanism in epideral brain compression,3 both studies involve transient regional cerebral ischemia. Both the steroids in the study by de Courten-Myers et al and the hypothermia in our study are considered to protect and resuscitate by affecting several sites along the ischemic cascade.4 In both studies treatment was initiated early, 30 minutes into the insult by de Courten-Myers et al and 15 minutes into the insult in our study. The results of the two studies are remarkably similar. In neither study did treatment decrease mortality, but in both studies treatment significantly decreased the cerebral infarct size (P<.05 in the de Courten-Myers study and P=.07 for infarct and P=.03 for overt histological damage in our study). In the de Courten-Myers study treatment clearly improved cerebral blood flow during ischemia (P<.005),
Neurobiology of passive avoidance impairment after ischemia.

E H Friedman

Stroke. 1994;25:1526
doi: 10.1161/01.STR.25.7.1526.a
Stroke is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1994 American Heart Association, Inc. All rights reserved.
Print ISSN: 0039-2499. Online ISSN: 1524-4628

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://stroke.ahajournals.org/content/25/7/1526.1.citation

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Stroke can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Stroke is online at:
http://stroke.ahajournals.org/subscriptions/