Improving the Appropriateness of Carotid Endarterectomy
Results of a Prospective City-Wide Study

John H. Wong, MD, MSc; Tracey B. Lubkey, RN; Maria E. Suarez-Almazor, MD, PhD; J. Max Findlay, MD, PhD

Background and Purpose—In light of previously reported concerns regarding carotid endarterectomy (CEA) use in our city, our goal was to determine the influence of a prospective audit and educational campaign on the performance of CEA with respect to surgical appropriateness and complication frequency.

Methods—Results of our previous audit of 291 CEAs, along with CEA practice guidelines and notification of prospective surveillance, were supplied to surgeons performing CEA in our city. After this, 184 consecutive patients undergoing CEA from September 1996 to August 1997 were followed prospectively. On the basis of blinded standardized remeasurements of angiographic carotid stenoses, CEA was classified as appropriate for patients with symptomatic carotid stenoses ≥70%, uncertain for those with symptomatic stenoses <70% or asymptomatic stenoses ≥60%, and inappropriate for patients with asymptomatic carotid stenoses <60% or preoperative neurological or medical instability.

Results—Forty percent of patients were asymptomatic. Compared with our prior audit, the rate of appropriate CEAs improved from 33% previously to 49% of cases in the present study (P=0.0005), uncertain indications did not change significantly (49% versus 47%; P=0.61), and inappropriate indications dropped from 18% to 4% (P=0.00002). Perioperative stroke or death occurred in 6.4% of symptomatic patients but developed in only 2.7% of asymptomatic patients, which was improved from the 5.1% rate previously found.

Conclusions—In our city, the use of a surgical audit identified areas of concern regarding CEA, and subsequent education and ongoing surveillance significantly improved the use and performance of this procedure. (Stroke. 1999;30:12-15.)

Key Words: carotid endarterectomy ■ carotid stenosis ■ health services misuse
complaints such as dizziness or cognitive impairment, and those in whom carotid stenosis was found incidentally were considered asymptomatic.

Preoperative carotid or cerebral angiograms were reviewed by an investigator (J.M.F. or J.H.W.) who was blinded to patient identity and degree of stenosis as read and reported by the radiologist who performed the procedure. Carotid stenosis was quantified according to the method used in the North American Symptomatic Carotid Stenosis Trial (NASCET) (ie, by comparing the greatest degree of linear stenosis at the carotid bifurcation with the normal distal internal carotid artery diameter). For each patient, the appropriateness of surgery was classified on the basis of the results of 5 randomized controlled trials studying CEA1,2,4–6 and by clinical practice guidelines established by the Canadian Neurosurgical Society,7 which had been circulated to the enrolled surgeons in the city. These criteria were used in conjunction with angiographic stenoses as recorded in the radiologists’ reports as well as with the remeasurement values of carotid narrowing. CEA was considered appropriate for patients with symptomatic carotid stenoses ≥70%. Uncertain indications for surgery were for those patients with symptomatic stenoses <70% or asymptomatic stenoses ≥60%. Patients were judged to have an inappropriate indication for surgery if they had an asymptomatic carotid stenosis <60% or if they were neurologically or medically unstable before CEA. Neurologically unstable patients were those who underwent surgery in the setting of a progressive neurological deficit or those who underwent surgery within 1 day of a fixed neurological deficit.10,11 High-risk preoperative medical conditions were unstable angina (defined as angina at rest or of new onset), myocardial infarction within 3 months before CEA, or uncontrolled congestive heart failure.

Patients were followed for the development of complications during their hospital course. The primary outcome was postoperative stroke, defined as the onset of a new neurological deficit (unrelated to cranial nerve injury) lasting >24 hours, or death within 30 days of surgery and was determined from both review of the hospitalization course and follow-up telephone interview of all discharged patients. A secondary outcome was the development of ≥1 cardiac complications in the hospital, specifically myocardial infarction, congestive heart failure, unstable angina, or atrial fibrillation.

Variables were coded dichotomously and analyzed with univariate techniques (χ2 or Fisher’s exact test, as appropriate) with the use of statistical computer software (SPSS 6.1, SPSS Incorporated). All tests were 2-tailed. Level of significance was set at a P value <0.05. The measure of agreement in angiographic accuracy between the radiologists’ reports and blinded remeasurements was quantified with the κ test statistic with 95% CIs. In determining a κ value, we dichotomized percent carotid stenoses into <70% or ≥70% categories and <60% or ≥60% categories for symptomatic and asymptomatic patients, respectively.

Results

Over a 12-month period, 184 CEAs were performed in 172 patients by 8 surgeons from the neurosurgery, general surgery, and vascular surgery services. Eighty-one operations were performed by 2 neurosurgeons, and the remaining 103 operations were performed by 6 general or vascular surgeons. The number of procedures performed by individual surgeons ranged from 2 to 75; 3 surgeons each performed >20 operations during the study period, and the other 5 each performed <20. Patients ranged from 46 to 90 years of age, and 116 (63%) were male. When the preoperative symptom status of the patients was considered, 110 patients (60%) were symptomatic from their carotid disease and 74 (40%) were asymptomatic (Table). Further examination of these asymptomatic patients revealed that 57% (42/74) had either a contralateral carotid occlusion or a severe (≥80%) ipsilateral carotid stenosis.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Part 1 (n=291)</th>
<th>Part 2 (n=184)</th>
<th>P*</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of CEAs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Symptomatic cases</td>
<td>174 (60%)</td>
<td>110 (60%)</td>
<td>1.0</td>
</tr>
<tr>
<td>Asymptomatic cases</td>
<td>117 (40%)</td>
<td>74 (40%)</td>
<td>1.0</td>
</tr>
<tr>
<td>Appropriateness of CEA†</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Appropriate surgery</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥70% symptomatic</td>
<td>92 (33%)</td>
<td>88 (49%)</td>
<td>0.0005</td>
</tr>
<tr>
<td>Uncertain surgery</td>
<td>138 (49%)</td>
<td>84 (47%)</td>
<td>0.61</td>
</tr>
<tr>
<td><70% symptomatic</td>
<td>63 (22%)</td>
<td>20 (11%)</td>
<td>0.002</td>
</tr>
<tr>
<td>≥60% asymptomatic</td>
<td>75 (27%)</td>
<td>64 (36%)</td>
<td>0.04</td>
</tr>
<tr>
<td>Inappropriate surgery</td>
<td>51 (18%)</td>
<td>8 (4%)</td>
<td>0.00002</td>
</tr>
<tr>
<td><60% asymptomatic</td>
<td>37 (13%)</td>
<td>8 (4%)</td>
<td>0.002</td>
</tr>
<tr>
<td>Unstable</td>
<td>14 (5%)</td>
<td>0</td>
<td>. . .</td>
</tr>
</tbody>
</table>

30-day stroke or death rate

Overall: 5.2% (95% CI: 3.6% to 7.0%) and 4.9% (95% CI: 3.2% to 6.7%). Symptomatic cases: 5.2% (95% CI: 2.8% to 8.4%) and 6.4% (95% CI: 3.2% to 9.9%). Asymptomatic cases: 5.1% (95% CI: 1.0% to 10.2%) and 2.7% (95% CI: 0.6% to 4.8%). General or vascular surgeons: 5.9% (95% CI: 2.3% to 10.1%) and 4.9% (95% CI: 1.4% to 8.3%). Neurosurgeons: 4.1% (95% CI: 0.4% to 8.9%) and 4.9% (95% CI: 0.4% to 8.9%).

The accuracy of angiographic measurement was determined by comparing the original angiographic reading by the radiologist with the blinded remeasurement value and was quantified as a κ value. Readings of stenoses in part 2 showed moderate agreement with a κ value of 0.49 (95% CI, 0.28 to 0.69), which was not significantly different (P>0.05) from the angiographic accuracy found in part 1 of the audit (κ=0.71; 95% CI, 0.65 to 0.77). Of the 180 angiograms obtained for remeasurement in part 2 (since 4 angiograms were unavailable for analysis), discrepancies in angiographic interpretation were found in 18 cases, of which 15 were instances of overestimation of the degree of stenosis made by the original reporting radiologist.

Using our classification of operative appropriateness and based on the degrees of carotid stenosis determined by blinded remeasurement of the angiograms, we found that 49% of patients had appropriate indications for operation, 47% had uncertain indications for CEA, and 4% underwent surgery inappropriately. When these rates of appropriateness were compared with those determined in part 1, we found that the rate of appropriate CEAs had significantly improved from 33% (P=0.0005), the rate of CEAs for uncertain indications did not change significantly from 49% (P=0.61), and the inappropriate use of CEA dropped significantly from 18% (P=0.00002).

We considered that it might be fairer to the surgeons enrolled in this study to consider appropriateness not just
Improving the Appropriateness of Carotid Endarterectomy

according to remeasured degrees of stenosis but instead in
relation to the stenosis values as reported by the radiologist
and presumably available at the time of surgery. However,
similar results were obtained; of the 184 cases of CEA, 95
patients (52%) underwent CEA for appropriate indications,
85 patients (46%) underwent surgery for uncertain reasons,
and 4 patients (2%) had CEA inappropriately. These results
were not significantly different from those determined with
the use of blinded remeasurement of the carotid angiograms.

Among those CEAs classified as uncertain according to
angiographic remeasurement, 20 cases (11% of the total) had
<70% stenosis, and the remaining 64 (36% of the total) had
\(\geq 60\% \) asymptomatic stenosis. All of the inappropriate
operations were for <60% asymptomatic stenosis, and none were
in medically or neurologically unstable patients.

In the series of patients examined in this study, 8 patients
(4.3%) suffered a postoperative stroke and 1 patient (0.5%)
died within 30 days of surgery, giving a total postoperative
stroke or death rate of 4.9%. Six strokes and 1 death due to
myocardial infarction occurred in the 110 patients with
symptomatic carotid disease, and 2 strokes (and no deaths)
ocurred in the 74 asymptomatic cases, giving stroke or death
rates of 6.4% and 2.7%, respectively.

Stroke or death rates among the different surgeons varied
from 0% to 17%, although both extremes were from surgeons
performing <10 CEAs each during the study period. Among
those surgeons each performing >20 CEAs, the stroke or
death rate ranged from 3.6% to 11%. When stratified accord-
ing to surgical specialty, the stroke or death rate was the same
(4.9%) for the neurosurgeons and the general or vascular
surgeons.

Perioperative cardiac complications were also documented
in the entire patient group. Two patients (1.1%) suffered
myocardial infarcts, 1 patient (0.5%) developed congestive
heart failure, 1 patient (0.5%) developed unstable angina, and
1 patient (0.5%) developed atrial fibrillation.

Discussion

Since recent randomized controlled trials have firmly sup-
ported the use of CEA under certain circumstances, there has
been renewed interest in CEA and a significant increase in its
use.\(^{12,13}\) Such studies have allowed stratification of
the appropriateness of surgical indications for CEA on the basis
of scientific evidence rather than expert opinion alone.\(^{14}\)
Several published randomized controlled trials have indicated
that CEA, in conjunction with optimal medical therapy, is
superior to medical therapy alone in reducing the risk of
stroke in patients with symptomatic severe (\(\geq 70\% \)) carotid
stenosis, thus making CEA for these patients clearly appro-
priate.\(^{1,2,5}\) Although a randomized controlled study has shown
an efficacy of CEA in lowering stroke risk among asym-
ptomatic patients with \(\geq 60\% \) carotid disease, the demonstrated
benefit of surgery was marginal and evident only with a very
low operative complication rate.\(^6\) Controversy over the use of
CEA for asymptomatic patients continues, thus suggesting
that the appropriateness of CEA for this group is uncertain on
the basis of currently available evidence.\(^8\)

Concerned that the standardized entrance criteria of these
randomized trials were not being followed during patient
selection in our community, we examined the issues of
appropriateness and complications of CEA in a retrospec-
tive audit.\(^7\) In that study of 291 consecutive CEAs performed on
265 patients from April 1994 through September 1995, we
found appropriate indications for surgery in only 33% of
patients, uncertain indications in 49%, and inappropriate
indications in 18%. As well, we found that while the overall
stroke or death rate was 5.2%, it was an unacceptably high
5.1% among patients with asymptomatic stenosis. In response
to that analysis, we launched an educational campaign and
prospective audit in an effort to address these problems.

The results of the prospective part of our audit contained in
the present report indicate a significant increase in the proportion
of appropriate operations as well as an important decrease in the
use of CEA for inappropriate indications. In our study popu-
lation, there was a greater use of CEA for patients with severe,
symptomatic carotid disease, which is the patient group that
benefits most from surgery.\(^1,2\) As well, fewer patients underwent
surgery for asymptomatic carotid stenosis <60%, which re-
mains a clearly inappropriate reason for CEA. The exact moti-
vations behind this change in physician behavior are unclear.
Given that the interval between parts 1 and 2 was <1 year and
that substantial changes in local patient selection were found, we
suggest that our regional audit and educational initiative are
likely to be responsible for at least some of the observed changes
in physician practice patterns. However, certainly other factors
besides education, both quantifiable and not quantifiable, are
likely to have influenced physician behavior and were not
identified in this study.

With respect to the proportion of surgery for uncertain
indications, there was no significant change between the 2
audits. In the present series, three quarters of the 84 patients
in the uncertain group had \(\geq 60\% \) asymptomatic stenoses, and
the remainder had moderate (<70%) symptomatic stenoses.
Examining the uncertain group further, we found that just
over one half of the asymptomatic patients had either a
high-grade (\(\geq 80\% \)) ipsilateral stenosis or a contralateral
carotid occlusion, which are factors that may strengthen the
argument for surgery in selected asymptomatic patients.\(^8\)
Furthermore, the stroke or death rate in our asymptomatic
patients was reduced to an acceptable level of risk (2.7%) that
probably increased the benefit of CEA in this patient group.
The reason for this decline in complications in our asym-
ptomatic patients between parts 1 and 2 is unclear, although in
both parts the asymptomatic subgroups were small enough
that 1 or 2 outcome events could have made a significant
impact on overall complication rates. It is possible that
asymptomatic patients were more carefully selected in part 2,
thus leading to a lower stroke or death rate.

Although the appropriateness of surgery for symptomatic
patients with <70% stenosis will likely be influenced by
NASCET study results, it should be noted that 18 of the 20
patients in this subgroup in the present series had stenoses
that were remeasured as being between 60% and 70%. The
appropriateness of CEA for these patients, likely to be
justified, will depend on forthcoming results and analysis of
the completed NASCET.

The accuracy of quantifying angiographic stenosis remains
an important issue, as we and others have previously report-
ed.15–18 It should be noted that before commencing our prospective study, we informed our radiologists of the results of the prior audit and requested specific use of the NASCET method in quantifying carotid stenoses. The roughly 10 radiologists that perform carotid angiography regionally were receptive to this suggestion, as evidenced by the almost uniform mention of NASCET criteria during angiogram reporting. While agreement between the original readings and the blinded remeasurements was acceptable, in cases in which a discrepancy between the 2 measurements was found, most (15/18, or 83%) were errors due to the overestimation of the degree of stenosis made by the reporting radiologist.

The results of an audit process such as ours depends on what is considered to constitute appropriate surgery. For example, a recent retrospective analysis of 1945 CEAs performed in Georgia in 1993 found that 96% were, according to their criteria, performed for appropriate indications.19 However, in that study carotid angiograms were not independently remeasured, and invasive imaging results were not uniformly obtained. As well, over half of patients were asymptomatic, which we have considered at best an uncertain indication since the benefit of CEA in this patient group is especially dependent on a low perioperative complication rate.20 Our classification of appropriateness will possibly change with release and analysis of the NASCET results for patients with symptomatic moderate carotid stenosis. Of note, however, is that only 11% of the patients in the present series were in this symptomatic moderate stenosis category.

The results of this study indicate that, at least locally, a strong interest in operating for asymptomatic carotid disease continues, despite designation of this practice as uncertain in the guidelines circulated and expression of significant concerns from authorities regarding surgery in this group of patients.21 However one chooses to classify the appropriateness of carotid surgery, this report does provide evidence that audits are useful in improving the performance of CEA. It has been suggested, and we would agree, that self-assessment of surgical performance by individual surgeons may be unreliable and that audits by independent third parties provide more accurate data regarding postoperative complications.22 Our results suggest that CEA audits that identify problems with procedure use, followed by dissemination of that information along with clinical practice guidelines and continued surveillance, can improve the appropriateness of CEA performed in a community. This study substantiates the practical use of audits in favorably influencing clinical practice patterns.

In conclusion, surgical audits can identify areas of concern in the performance of CEA. Combined with an educational campaign, further prospective surveillance of CEA use clearly reduced the number of inappropriate operations and increased the use of CEA for appropriate indications. As well, our audit may have helped to play a role in reducing the rate of complications in asymptomatic CEA patients. This is a group of patients in whom the benefit of surgery is especially dependent on careful patient selection combined with low operative risk. Surgical audits are recommended for the identification and resolution of problems in CEA use.

References
2. European Carotid Surgery Trialists’ Collaborative Group. MRC European Carotid Surgery Trial: interim results for symptomatic patients with severe (70–99%) or with mild (0–29%) carotid stenosis. Lancet. 1991;337:1235–1243.
Improving the Appropriateness of Carotid Endarterectomy: Results of a Prospective City-Wide Study

John H. Wong, Tracey B. Lubkey, Maria E. Suarez-Almazor and J. Max Findlay

Stroke. 1999;30:12-15
doi: 10.1161/01.STR.30.1.12

Stroke is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1999 American Heart Association, Inc. All rights reserved.
Print ISSN: 0039-2499. Online ISSN: 1524-4628

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://stroke.ahajournals.org/content/30/1/12

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in *Stroke* can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to *Stroke* is online at:
http://stroke.ahajournals.org//subscriptions/