Comparison of Risk Factors for Stroke Incidence and Stroke Mortality in 20 Years of Follow-Up in Men and Women in the Renfrew/Paisley Study in Scotland

Carole L. Hart, MA; David J. Hole, MSc; George Davey Smith, MD

Background and Purpose—The aim of this study was to relate risk factors in middle-aged men and women to stroke incidence (defined by having a hospital discharge with a main diagnosis of stroke) and compare this with the associations between risk factors and stroke mortality.

Methods—In the early to mid-1970s, when they were 45 to 64 years of age, 7052 men and 8354 women from the Renfrew/Paisley prospective cohort study in Scotland were screened. Risk factors measured included blood pressure, blood cholesterol and glucose, respiratory function, cardiothoracic ratio, smoking habit, height, body mass index, preexisting coronary heart disease, and diabetes. These were related to stroke incidence over 20 years of follow-up.

Results—Diastolic and systolic blood pressure, smoking, cardiothoracic ratio, preexisting coronary heart disease, and diabetes were positively related to stroke incidence for men and women, whereas adjusted FEV$_1$ (forced expiratory volume in 1 second) and height were negatively related. Cholesterol was not related to stroke. Glucose for nondiabetic subjects had a U-shaped relationship with stroke. Body mass index was not clearly related to stroke, although participants with the highest body mass index had the highest stroke rate. Former smokers had similar stroke rates to never-smokers. Tests between the associations of risk factors and stroke incidence revealed these were not statistically different from the associations with stroke mortality.

Conclusions—The risk factors had a similar effect on stroke incidence as on stroke mortality. Epidemiological studies with information on stroke mortality are likely to give results applicable to stroke incidence. (Stroke. 2000;31:1893-1896.)

Key Words: epidemiology ▪ prospective studies ▪ risk factors ▪ stroke prevention

We have previously presented analyses of the relationship between potential risk factors for stroke and stroke mortality in 20 years of follow-up in men and women in the Renfrew/Paisley study.1 We now compare those results with similar analyses of risk factors with stroke incidence, as defined by having a hospital discharge with a main diagnosis of stroke. The Renfrew/Paisley data set is unique in having complete, with no important discrepancies regarding causes of death. These methods had been notified of dates and causes of death. These methods had been developed according to the Minnesota system6 and used to define ischemia on ECG;4 Preexisting coronary heart disease (CHD) was defined as having angina, ECG ischemia, or severe chest pain.

Study participants were flagged at the National Health Service Central Register in Edinburgh, UK, which enabled the study team to be notified of dates and causes of death. These methods had been assessed previously, and notification was found to be virtually complete, with no important discrepancies regarding causes of death.7 In addition, recent computerized linkage of the cohort with
The Scottish Morbidity Records for acute hospital discharges (SMR1) provided information on main diagnoses of stroke (International Classification of Diseases, 8th and 9th revisions [ICD-8, ICD-9] codes 430 to 438). This computerized method enabled 86% of the cohort to be linked to an SMR record (acute, mental health, or cancer mortality). Sufficiently large numbers of participants had hospital stays due to stroke to enable relationships between risk factors and stroke incidence to be investigated. Participants had hospital stays due to stroke to enable relationships between risk factors and stroke incidence to be investigated.

Results

In the 20-year follow-up period, 472 men and 557 women had a hospital discharge for stroke. Clear positive relationships were seen between both systolic and diastolic blood pressure and stroke in men and women (Table 1). Men and women in the highest blood pressure quintiles (systolic: ≥ 167 mm Hg for men, ≥ 172 mm Hg for women; diastolic: ≥ 97 mm Hg for men and women) had more than double the stroke incidence rate of those in the lowest quintiles. No relationship was seen between cholesterol and stroke in men and women. The relationship between glucose (excluding diabetic subjects) and stroke appeared U shaped in both men and women, with the highest rate seen in the lowest quintile. Adjusted FEV₁ was inversely related to stroke for men and women, with strong significant trends. Cardiothoracic ratio was positively related to stroke for both men and women. The relationship of body mass index with stroke was less clear, but men and women with the highest body mass index had the highest stroke rate. Height was negatively associated with stroke.

There was a dose-response relationship between cigarette smoking and stroke for men (Table 2). Ex-smokers had stroke rates similar to never-smokers. The relative rates of stroke for a 1-SD change in each risk factor are shown in Table 3 and compared with previously published relative rates of stroke mortality for a 1-SD change in each risk factor. Tests between the associations were all nonsignificant. The relative rates of stroke incidence and stroke mortality are also shown for diabetes and preexisting CHD. For diabetic subjects, the relative rate for stroke mortality was higher than that for stroke incidence for both men and women, but tests between them were also nonsignificant.

Discussion

The Renfrew/Paisley study is unique in the United Kingdom in having a large general population cohort of both men and women with comprehensive information on risk factors in middle age and 20 years of follow-up for both stroke mortality and incidence. Sufficiency large numbers of participants had hospital stays due to stroke to enable relationships between risk factors and stroke incidence to be investigated. If participants had nonfatal strokes at home and were not...
admitted to hospital, then no information was available to the study team. Contemporary estimates suggest that 70% of stroke patients are admitted to hospital,9 with younger stroke sufferers being more likely to be admitted.10 The median age of stroke admission in our study was 70.6 years, and given the age at entry of our participants, no strokes could have occurred over the age of 85, after which admission rates become low. Therefore, most nonfatal strokes are likely to be admitted to hospital, and smoking cessation reduced the stroke incidence risk.6,11,12 which suggests that a real way to reduce both stroke occurrence and mortality is to stop smoking.

It is important to know whether risk factors have the same effect on stroke incidence as on stroke mortality. If the risk is similar for incidence and mortality, then measures that have been shown to reduce risk will prevent nonfatal stroke and stroke mortality. It was a suggested inverse association between height and stroke incidence.15 Height was inversely associated with stroke incidence and mortality. In the British Regional Heart Study of men, an inverse association was seen between height and incident stroke, both fatal and nonfatal.15 Cardiothoracic ratio and FEV1 have not generally been measured in other studies, but here both were related to stroke incidence in the same way as mortality. Body mass index was not clearly related to stroke incidence or mortality in the present study. The Oslo study found no relationship between body mass index and stroke mortality or incidence.15 Generally, there is less evidence of obesity being related to stroke, although it could be acting through its association with other risk factors for stroke, such as elevated blood pressure, blood glucose, and obstructive sleep apnea.11,17 Height was inversely associated with stroke incidence and mortality. In the British Regional Heart Study of men, an inverse association was seen with fatal but not nonfatal stroke.18 Height was inversely associated with stroke events for men but not women in a study in southeastern New England.19 In the Oslo study, there was a suggested inverse association between height and stroke incidence and mortality.15

Smoking has been seen as a risk factor for stroke incidence in other studies.11,15,20,21 In the Oslo study of men, smoking was found to be a stronger predictor of stroke mortality than incidence.15 A dose response was seen with cigarette smoking, and smoking cessation reduced the stroke incidence risk. This was also seen for stroke mortality in the present cohort.1 Other studies have shown this effect,12 which suggests that a real way to reduce both stroke occurrence and mortality is to reduce smoking.

TABLE 3. Comparison of Relationships of Risk Factors With Stroke Incidence and Stroke Mortality

<table>
<thead>
<tr>
<th></th>
<th>Men</th>
<th>Test for Difference† (P)</th>
<th>Women</th>
<th>Test for Difference† (P)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Incidence</td>
<td>Mortality</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relative rate for 1-SD increase</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SBP</td>
<td>1.45 (1.33–1.58)</td>
<td>1.50 (1.35–1.66)</td>
<td>0.62</td>
<td></td>
</tr>
<tr>
<td>DBP</td>
<td>1.37 (1.26–1.48)</td>
<td>1.44 (1.30–1.59)</td>
<td>0.45</td>
<td></td>
</tr>
<tr>
<td>Cholesterol</td>
<td>1.04 (0.95–1.15)</td>
<td>0.94 (0.83–1.05)</td>
<td>0.16</td>
<td></td>
</tr>
<tr>
<td>Glucose</td>
<td>1.07 (0.98–1.18)</td>
<td>1.10 (0.99–1.23)</td>
<td>0.71</td>
<td></td>
</tr>
<tr>
<td>Cardiothoracic ratio</td>
<td>1.18 (1.07–1.29)</td>
<td>1.20 (1.07–1.34)</td>
<td>0.82</td>
<td></td>
</tr>
<tr>
<td>Body mass index</td>
<td>1.10 (1.01–1.21)</td>
<td>1.01 (0.90–1.14)</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>Relative rate for 1-SD decrease</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adjusted FEV1</td>
<td>1.23 (1.12–1.34)</td>
<td>1.27 (1.14–1.41)</td>
<td>0.66</td>
<td>1.22 (1.12–1.32)</td>
</tr>
<tr>
<td>Height</td>
<td>1.16 (1.06–1.27)</td>
<td>1.21 (1.08–1.35)</td>
<td>0.60</td>
<td>1.14 (1.05–1.24)</td>
</tr>
<tr>
<td>Relative rate associated with 20 more cigarettes/day</td>
<td>1.28 (1.00–1.64)</td>
<td>1.47 (1.08–2.00)</td>
<td>0.49</td>
<td>1.25 (0.89–1.76)</td>
</tr>
<tr>
<td>Rela薮e rate associated with having</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diabetes</td>
<td>1.52 (0.72–3.21)</td>
<td>2.89 (1.49–5.62)</td>
<td>0.21</td>
<td>2.83 (1.63–4.90)</td>
</tr>
<tr>
<td>Preexisting CHD</td>
<td>1.63 (1.34–1.97)</td>
<td>1.63 (1.28–2.06)</td>
<td>0.99</td>
<td>1.52 (1.28–1.81)</td>
</tr>
</tbody>
</table>

SBP indicates systolic blood pressure; DBP, diastolic blood pressure. *From Reference 1. †Difference between incidence and mortality.

Glucose in nondiabetic subjects was significantly related to stroke incidence and mortality in women but not men. However, glucose was not measured for all sectors of the Paisley cohort and was missing for 4703 people. The Oslo study failed to find significant relationships between glucose and stroke incidence or mortality.15 Cardiothoracic ratio and FEV1 have not generally been measured in other studies, but here both were related to stroke incidence in the same way as mortality.
encourage smoking cessation. Diabetes has been recognized as a risk factor for stroke incidence\(^{11,20}\) and mortality.\(^{22,23}\) Preexisting CHD was significantly related to stroke, confirming other studies.\(^{11,20}\)

To conclude, we have found that the risk factors considered had similar relationships for stroke incidence as stroke mortality, and control of some risk factors could be expected to reduce stroke incidence and any resulting disability, in addition to reducing stroke mortality. Epidemiological studies with only mortality outcomes are likely to give results that are also applicable to stroke incidence.

Acknowledgments
Funding was provided by grants from Chest, Heart and Stroke Scotland and the Stroke Association. Victor M. Hawthorne and Charles R. Gillis were responsible for the original study of the Renfrew/Paisley cohort, and Pauline MacKinnon is responsible for updating mortality data.

References