Effect of Prior Aspirin Use on Stroke Severity in the Trial of Org 10172 in Acute Stroke Treatment (TOAST)

Janet L. Wilterdink, MD; Birgitte Bendixen, MD; Harold P. Adams, Jr, MD; Robert F. Woolson, PhD; William R. Clarke, PhD; Michael D. Hansen, MS; for the TOAST Investigators

Background and Purpose—Although the efficacy of aspirin in reducing stroke incidence is clear, its role in reducing stroke severity is disputed. This study compares stroke severity between patients who did or did not take aspirin in the week before stroke and enrollment in the Trial of Org 10172 in Acute Stroke Treatment (TOAST).

Methods—Of 1275 patients randomized, 509 reported aspirin use in the week before stroke; 766 did not. Clinical stroke severity was assessed with the National Institutes of Health Stroke Scale (NIHSS) and the Supplementary Motor Examination (SME) at trial entry and at 3 months. Using these scales, we compared the categorization of stroke severity (mild, moderate, and severe) and mean scores between aspirin users and nonusers.

Results—The difference in distribution of baseline NIHSS scores was statistically significant between aspirin users and nonusers (P=0.006), with a greater percentage of milder strokes among aspirin users. The difference in mean baseline NIHSS scores was also significantly lower in aspirin users (8.2) and nonusers (9.3) (P=0.003). The distribution of baseline SME scores and mean SME scores also showed lower stroke severity in aspirin users than in nonusers (P=0.048 and P=0.004, respectively). At 3 months, differences in stroke severity measured by the SME but not the NIHSS remained statistically significant. Seven-day and 3-month mortality did not differ significantly.

Conclusions—In this study aspirin use is associated with milder clinical deficits at stroke onset. These deficits may affect prognosis and influence response to treatment. Future clinical trials should ensure that prestroke aspirin use is comparable in study groups. (Stroke. 2001;32:2836-2840.)

Key Words: aspirin ■ stroke outcome ■ stroke prevention

Aspirin and other antiplatelet drugs have well-established efficacy in secondary prevention of ischemic stroke. This efficacy is generally measured by reduction in incidence of ischemic stroke. However, this may provide an incomplete measure of efficacy if stroke severity as well as stroke incidence is diminished.

Several groups have investigated this question, some finding a reduction in stroke severity among aspirin users,1–4 others not.5–10 However, these studies may have been inconclusive because of small sample size, particularly in the aspirin-treated groups.1,3,6,7,9,10 Another limitation of many previous studies was the use of low-resolution stroke severity measures, such as “fatal versus nonfatal” or the 6-point modified Rankin Scale, which may be unable to detect relatively small differences in stroke severity between groups.1,2,4,5,8

In the Trial of Org 10172 in Acute Stroke Treatment (TOAST), patients were rigorously evaluated for stroke severity with the use of well-validated scales, including the National Institutes of Health Stroke Scale (NIHSS) and the Supplementary Motor Examination (SME), which measure stroke severity on a 42- and 40-point scale, respectively.11,12 The purpose of this study was to compare stroke severity with the use of these measures among users and nonusers of aspirin.

Subjects and Methods

TOAST was a multicenter, randomized, placebo-controlled, double-blind clinical trial that tested the usefulness of early (<24 hours) intravenously administered antithrombotic therapy in the treatment of patients with acute ischemic stroke.13,14 Patients with acute ischemic stroke symptoms of ≤24 hours in duration were randomized at 37 centers in the United States. The study population for this analysis included all 1275 intent-to-treat patients randomized in TOAST. Patients and families were questioned as to their use of aspirin (any) in the 7 days before their stroke. Patients having unknown aspirin use (n=21) during this period were categorized as nonusers. No information was collected as to daily use or dose of aspirin used during this period; aspirin use was not confirmed by blood or urine levels, nor was information collected about other antiplatelet therapy or warfarin use, although patients with “therapeutic” international normalized ratios secondary to warfarin were

Received March 5, 2001; final revision received July 24, 2001; accepted August 2, 2001.

From the Department of Clinical Neurosciences, Brown Medical School, Providence, RI (J.L.W.); Department of Neurology, Albert Einstein College of Medicine, New York, NY (B.B.); and Department of Neurology (H.P.A.) and College of Public Health (R.F.W., W.R.C., M.D.H.), University of Iowa College of Medicine, Iowa City.

Correspondence to Janet L. Wilterdink, MD, Department of Neurology, 110 Lockwood St, No. 324, Providence, RI 02903. E-mail wilterdin@brown.edu

© 2001 American Heart Association, Inc.

Stroke is available at http://www.strokeaha.org
not included because prolonged coagulation time was an exclusion for entry in TOAST.

All patients were examined by investigators who were experienced and certified in the application of the NIHSS and SME. Aspirin use (as defined by prespecified criteria) was also compared between aspirin users and aspirin nonusers. Categories of stroke subtypes were defined as (atherothromboembolic, cardioembolic, lacunar, other, or unknown), as aspirin nonusers were compared. Categories of stroke subtypes were defined as (atherothromboembolic, cardioembolic, lacunar, other, or unknown), as aspirin nonusers were compared. Categories of stroke subtypes were defined as (atherothromboembolic, cardioembolic, lacunar, other, or unknown), as aspirin nonusers were compared.

Results

Almost 40% of subjects (509 of 1275 patients) had used aspirin at least once (aspirin users) in the 7 days preceding current stroke, while 766 had no or unknown aspirin use (aspirin nonusers). Categorization of NIHSS scores, mean NIHSS scores, categorization of SME scores, and mean SME scores at 3 months are presented in Tables 3 and 4. At 3 months, aspirin users continued to have milder motor deficits (as measured by the SME), but the trend toward milder strokes in patients taking aspirin as measured by the NIHSS, while present, was no longer statistically significant.

Differences in 7-day mortality (1.9%) and 3-month mortality (6.3%) were not statistically significant between aspirin users and nonusers. The size of infarction, estimated by local investigators’ review of 90-day CT scans as small (<0.5 cm), intermediate (0.5 to 1 cm), moderate (1 to 3 cm), large (>3 cm), and massive (multilobar), was not significantly different between aspirin users and nonusers.

This was not a randomized treatment trial of aspirin use versus no aspirin use, and therefore the role of potential confounding factors in the observed effect of aspirin on stroke severity may be great. To assess this, various characteristics of the aspirin users and aspirin nonusers were compared. Table 5. Expectedly, aspirin users had a higher preponderance of patients who had atherosclerosis risk factors (except diabetes) and other manifestations of atherosclerotic vascular disease in the cerebral, coronary, or peripheral circulations. Aspirin users were also more likely to be white than nonwhite. After we controlled for these factors using the Cochran-Mantel-Haenszel row mean score test using ranks adjusted for sex, race, categorized age, peripheral vascular history, atherosclerosis risk factors, cardiac history, and cardiovascular history, was used to control for differences in NIHSS and SME scores between aspirin users and nonusers.

Table 1. Categorization of Baseline Stroke Severity by Aspirin Use: NIHSS Score

<table>
<thead>
<tr>
<th>Baseline NIHSS Score, n*</th>
<th>Mean Baseline NIHSS Score</th>
<th>Median Baseline NIHSS Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mild (0–6 Points)</td>
<td>256 (50.3%)</td>
<td>6 points</td>
</tr>
<tr>
<td>Moderate (7–15 Points)</td>
<td>204 (40.1%)</td>
<td></td>
</tr>
<tr>
<td>Severe (16–42 Points)</td>
<td>49 (9.6%)</td>
<td></td>
</tr>
<tr>
<td>Aspirin use (n=509)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No aspirin use (n=766)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Distribution of scores: P=0.006; controlling for covariates, P=0.007.
†P=0.003; controlling for covariates, P=0.029.

Table 2. Categorization of Baseline Stroke Severity by Aspirin Use: SME Score

<table>
<thead>
<tr>
<th>Baseline SME Score, n†</th>
<th>Mean Baseline SME Score</th>
<th>Median Baseline SME Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mild (0–6 Points)</td>
<td>283 (55.6%)</td>
<td>5 points</td>
</tr>
<tr>
<td>Moderate (7–14 Points)</td>
<td>125 (24.6%)</td>
<td></td>
</tr>
<tr>
<td>Severe (15–40 Points)</td>
<td>101 (19.8%)</td>
<td></td>
</tr>
<tr>
<td>Aspirin use (n=509)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No aspirin use (n=766)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Distribution of scores: P=0.048; controlling for covariates, P=0.364.
†P=0.004; controlling for covariates, P=0.384.
subtypes among aspirin users and nonusers was compared. A significant difference was found between the 2 groups, with aspirin users having a greater preponderance of cardioembolic strokes compared with nonusers (26.2% versus 17.5%) \((P=0.002) \).

There was no interaction between danaparoid/placebo treatment and aspirin use. There was no difference between aspirin users and nonusers with regard to baseline glucose, initial temperature, elevated white blood cell count, or time to first neurological examination.

Discussion

The results of this study suggest that aspirin may reduce clinical stroke severity. We found that both overall deficit and motor impairments were less severe in patients who had recently used aspirin compared with those who had not. Several different potential mechanisms provide a rational basis for antiplatelet therapy to have this effect. Platelets play a critical role in initiating the thrombotic process and are believed to constitute a large proportion of the thrombus volume, perhaps 50%.\(^{18}\) Interference with this process by antiplatelet drugs may be expected to limit the size and extent of thromboses and subsequent emboli. These smaller clots may therefore occlude smaller vessels and thereby cause smaller strokes. There are some experimental data to support this hypothesis. In a guinea pig model of acute endothelial carotid injury, Huang and colleagues\(^{19}\) were able to show that this hypothesis. In a guinea pig model of acute endothelial

TABLE 3. Categorization of 3-Month Stroke Severity by Aspirin Use: NIHSS Score

<table>
<thead>
<tr>
<th>3-Month NIHSS Score, n*</th>
<th>Mean 3-Month NIHSS Score†</th>
<th>Median 3-Month NIHSS Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mild (0–6 Points)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspirin use (n=509)</td>
<td>389 (76.4%)</td>
<td>66 (13.0%)</td>
</tr>
<tr>
<td>No aspirin use (n=764)</td>
<td>558 (73.0%)</td>
<td>113 (14.8%)</td>
</tr>
<tr>
<td>Moderate (7–15 Points)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspirin use (n=509)</td>
<td>54 (10.6%)</td>
<td>93 (12.2%)</td>
</tr>
<tr>
<td>No aspirin use (n=764)</td>
<td>135 (17.5%)</td>
<td>209 (27.0%)</td>
</tr>
<tr>
<td>Severe (16–42 Points)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspirin use (n=509)</td>
<td>6.4±10.7 points</td>
<td>3 points</td>
</tr>
<tr>
<td>No aspirin use (n=764)</td>
<td>6.9±10.6 points</td>
<td>3 points</td>
</tr>
</tbody>
</table>

*Distribution of scores: \(P=0.409; \) controlling for covariates, \(P=0.107. \)

†\(P=0.145; \) controlling for covariates, \(P=0.107. \)

TABLE 4. Categorization of 3-Month Stroke Severity by Aspirin Use: SME Score

<table>
<thead>
<tr>
<th>3-Month SME Score, n*</th>
<th>Mean 3-Month SME Score†</th>
<th>Median 3-Month SME Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mild (0–6 Points)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspirin use (n=509)</td>
<td>369 (72.5%)</td>
<td>56 (11.0%)</td>
</tr>
<tr>
<td>No aspirin use (n=764)</td>
<td>510 (66.8%)</td>
<td>104 (13.6%)</td>
</tr>
<tr>
<td>Moderate (7–14 Points)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspirin use (n=509)</td>
<td>84 (16.5%)</td>
<td></td>
</tr>
<tr>
<td>No aspirin use (n=764)</td>
<td>150 (19.6%)</td>
<td></td>
</tr>
<tr>
<td>Severe (15–40 Points)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspirin use (n=509)</td>
<td>6.6±11.0 points</td>
<td>1 points</td>
</tr>
<tr>
<td>No aspirin use (n=764)</td>
<td>7.4±10.9 points</td>
<td>2 points</td>
</tr>
</tbody>
</table>

*Distribution of scores: \(P=0.094; \) controlling for covariates, \(P=0.167. \)

†\(P=0.033; \) controlling for covariates, \(P=0.095. \)
oxidative tissue damage may be reduced by aspirin therapy.28 This aspirin effect may also be dose dependent. More recently, Riepe and colleagues27 suggested that the inhibition of oxidative phosphorylation by aspirin led to their observation that aspirin pretreatment delayed decline of intracellular ATP stores and improved neuronal function after experimental in vitro hypoxia.

There are fewer data available that examine the efficacy of aspirin in reducing the extent of ischemic injury in noncerebrovascular atherosclerotic disease. However, a study of aspirin use in 539 acute coronary events demonstrated a shift to less severe manifestations of acute coronary syndromes in aspirin users, including non-Q-wave as opposed to Q-wave myocardial infarction and unstable angina versus myocardial infarction.29 A similar reduction in myocardial infarction size, location, and ejection fraction was not seen in the Physicians Health Study, but sufficient statistical power may have been lacking.30

The strengths of this study include the fact that these data were prospectively collected about aspirin use in a large, multicenter trial whose patients are representative of Americans who have ischemic stroke. All patients were evaluated within 24 hours by validated, clinically relevant rating instruments.

A problem with the comparison between aspirin users and nonusers in this study is that this is a post hoc analysis from data collected for a clinical trial. Patients were not randomly assigned to prior aspirin use as a treatment group. This is important because numerous factors that influence aspirin use may also correlate with clinical stroke severity. These include age, prior cerebrovascular or cardiovascular history, stroke mechanism, medical comorbidity, and atherosclerosis risk factors. These factors were dissimilarly distributed among aspirin users and nonusers in this study. It is expected, however, that some of these factors (ie, aspirin users were older and had more risk factors than nonusers) would bias the data toward higher stroke severity in the aspirin group.4,10,31–34 Therefore, these factors may have limited our ability to see larger differences and more persistent differences between the groups. Alternatively, it is possible that the presence of these factors premorbidly may imply that such patients were receiving a greater degree of medical attention and engaging in more aggressive risk factor reduction than were those who did not carry these diagnoses. Even the presence of aspirin use among such patients may represent that more active preventative measures were being pursued. It is possible that these may be equally responsible to aspirin in achieving the lower stroke severity that was observed. While only a prospective randomized study of aspirin versus placebo, which thereby eliminates confounding bias, will be able to better assess this question, it is impossible that such a study will be done.

Another limitation of nonrandomization is that stroke subtypes were unevenly distributed among treatment groups. One would expect, however, that the preponderance of cardioembolic strokes in the aspirin users might bias the results toward more severe strokes in this group.4,10,35–36 Aspirin has known efficacy in the prevention of cardioembolic strokes but has been demonstrably inferior to warfarin for most of these conditions. Interestingly, in contrast to this study, Chimowitz et al35 concluded that prior aspirin use did not clearly influence stroke subtype; 47 consecutive patients who suffered a stroke while on aspirin seemed to have a distribution of stroke etiologies similar to those reported in larger stroke data banks. Definitions of stroke subtypes in this study did not seem to differ significantly from those used in TOAST, but the series is quite small.

This study did not elicit information on the dose of prior aspirin use. Therefore, its effect on clinical stroke severity cannot be assessed. While informal surveys of clinical practice reveal that most neurologists use a dose of 325 mg per day, patients may have been prescribed aspirin by non-neurologists or have been taking it without specific physician recommendations. Thus, it seems likely that a broad range of aspirin doses is represented in the aspirin users. In addition, aspirin users were those who responded that they had used aspirin in the preceding 7 days. Such patients may merely have taken 1 aspirin tablet during that week or may have been on regular daily treatment. These issues may be important because, while thromboxane A₂ inhibition may be maximal with low-dose aspirin, other important aspirin effects, including its potential neuroprotective effects, may require higher doses and more frequent administration to maximize efficacy. Others question whether even the antiaggregant effect of aspirin might be dose related in some individuals.37 Aspirin nonusers may also have been on other antithrombotic or

TABLE 5. Demographic and Clinical Characteristics of Aspirin Users and Nonusers

<table>
<thead>
<tr>
<th></th>
<th>No Aspirin Use</th>
<th>Aspirin Use</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>766</td>
<td>509</td>
<td></td>
</tr>
<tr>
<td>Mean age, y</td>
<td>64.4</td>
<td>66.9</td>
<td><0.001</td>
</tr>
<tr>
<td>Male, %</td>
<td>59.1</td>
<td>62.9</td>
<td>0.198</td>
</tr>
<tr>
<td>Nonwhite, %</td>
<td>42.6</td>
<td>29.9</td>
<td><0.001</td>
</tr>
<tr>
<td>History of, %</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypertension</td>
<td>63.1</td>
<td>71.1</td>
<td>0.003</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>27.4</td>
<td>31.6</td>
<td>0.116</td>
</tr>
<tr>
<td>Hypercholesterolemia</td>
<td>17.5</td>
<td>30.8</td>
<td><0.001</td>
</tr>
<tr>
<td>Myocardial infarction</td>
<td>10.3</td>
<td>30.1</td>
<td><0.001</td>
</tr>
<tr>
<td>Angina</td>
<td>11.2</td>
<td>29.1</td>
<td><0.001</td>
</tr>
<tr>
<td>Congestive heart failure</td>
<td>6.9</td>
<td>12.8</td>
<td>0.001</td>
</tr>
<tr>
<td>Atrial fibrillation</td>
<td>4.6</td>
<td>12.6</td>
<td><0.001</td>
</tr>
<tr>
<td>Valvular heart disease</td>
<td>2.5</td>
<td>4.3</td>
<td>0.075</td>
</tr>
<tr>
<td>Leg claudication</td>
<td>4.8</td>
<td>9.4</td>
<td>0.002</td>
</tr>
<tr>
<td>EC/IC surgery</td>
<td>0.1</td>
<td>0.2</td>
<td>1.000</td>
</tr>
<tr>
<td>Carotid endarterectomy</td>
<td>0.4</td>
<td>3.7</td>
<td><0.001</td>
</tr>
<tr>
<td>Cardiac surgery</td>
<td>3.0</td>
<td>17.5</td>
<td><0.001</td>
</tr>
<tr>
<td>Tobacco use</td>
<td>41.9</td>
<td>34.6</td>
<td>0.010</td>
</tr>
<tr>
<td>Prior stroke</td>
<td>11.1</td>
<td>28.3</td>
<td><0.001</td>
</tr>
<tr>
<td>Prior TIA</td>
<td>9.9</td>
<td>20.8</td>
<td><0.001</td>
</tr>
<tr>
<td>Atherosclerosis risk factors</td>
<td>87.3</td>
<td>91.0</td>
<td>0.046</td>
</tr>
<tr>
<td>Cardiac history</td>
<td>24.9</td>
<td>52.5</td>
<td><0.001</td>
</tr>
<tr>
<td>Cardiovascular history</td>
<td>20.0</td>
<td>44.4</td>
<td><0.001</td>
</tr>
</tbody>
</table>

EC/IC indicates extracranial/intracranial; TIA, transient ischemic attack.
antiplatelet treatments such as ticlopidine. While this may
have minimized the magnitude of the apparent effect of aspirin on stroke severity, ticlopidine use is unlikely to have
been particularly prevalent. At the time that patients were
entered into this study (1990–1996), no other antiplatelet
therapies were approved for stroke prevention.

The influence of aspirin use on stroke severity has several
implications. It suggests that future clinical trials studying
stroke prevention therapies should include some measure of
stroke severity as well as stroke incidence to best determine
the efficacy of treatment. Additionally, because the severity
of neurological impairment affects outcome after stroke, prior
aspirin use could influence response to acute treatment.

Therefore, future clinical trials testing treatments for acute
ischemic stroke should ensure that use of aspirin before
stroke is comparable in all study groups.

Acknowledgments
The TOAST study was funded by the US Public Health Service, the
National Institutes of Health, and the National Institute of Neuro-
logical Disorders and Stroke grants RO1-NS-27863 and RO1-NS-
27960 and by Organon, Inc. There was no specific funding for this
project.

References
1. Grotta JC, Lemak NA, Gary H, Fields WS. Does platelet antiaggregant
2. Carolei A, Prencipe M, Fiorelli M, Fieschi C. Severity of stroke and
3. Joseph R, Han E, Gronsfeld S, Welch KMA. Prior use of aspirin may
earl death in acute ischemic stroke and intracerebral hemorrhage: a
5. Keprov V, Bornstein NM, Hass Y, Korczyn AD. Does daily aspirin
7. Dogryszewski J, Herroelen L, De Kippel N. Early outcome in acute ischemic
stroke is not influenced by the prophylactic use of low dose aspirin.
8. Sivenius J, Cunha L, Dienes HC, Forbes C, Laakso M, Lowenthal A,
Smets P, Riekkinen P, for the European Stroke Prevention Study 2
Working Group. Antiplatelet treatment does not reduce the severity of
9. Hobson R, Krupski W, Weiss D, for the VA Cooperative Study Group on
Asymptomatic Carotid Stenosis. Influence of aspirin in the management
109:659–672.
11. Brott TG, Adams HP Jr, Olinger CP, Marler JB, Barsan WG, Biller J,
Spilker J, Holleran R, Eberle R, Hertzberg V. Measurements of acute
cerebral infarction: a clinical examination scale. Stroke. 1989:20:
864–879.
12. Goldstein LB, Bartels C, Davis JN. Interrater reliability of the NIH Stroke
13. The Publications Committee for the Trial of ORG 10172 in Acute Stroke
Treatment (TOAST) Investigators. Low molecular weight heparin
ORG 10172 (danaparoid) and outcome after acute ischemic stroke: a
14. Adams HP Jr, Woolson RF, Clarke WR, Davis PH, Bendixen BH, Love
BB, Wasek PA, Grimsman KJ. Design of the Trial of ORG 10172 in
Acute Stroke Treatment (TOAST). Control Clin Trials. 1997;18:
358–377.
15. Albanese MA, Clarke WR, Adams HP, Woolson RF. Ensuring reliability
of outcome measures in multicenter clinical trials of treatments for acute
ischemic stroke: the program developed for the Trial of Org 10172 in
16. Mohr JP, Biller J, Hilal SK. Magnetic resonance versus computed tomo-
17. Adams HP Jr, Bendixen BH, Kappelle LJ, Biller J, Love BB, Gordon DL,
Marsh EE III. Classification of subtype of acute ischemic stroke: defi-
nitions for use in a multicenter clinical trial: TOAST: Trial of ORG 10172
18. Joseph R, Han E, Tsering C, Gronsfeld S, Welch KM. Platelet activity and
19. Huang ZS, Teng CM, Lee TK, Shun CT, Wang CY. Combined use of
aspirin and heparin inhibits in vivo acute carotid thrombosis. Stroke.
20. Hallenbeck JM, Furlow TW. Prostaglandin I2 and indomethacin prevent
impairment of post-ischemic brain reperfusion in the dog. Stroke. 1979;
21. Rosenblum WI, El-Sabban F. Platelet aggregation in the cerebral micro-
circulation: effect of aspirin and other agents. Circ Res. 1977;40:
320–328.
function in acute ischemic stroke: importance of dense body secretion and
23. Dougherty JH, Levy DE, Waksler BB. Platelet activation in acute cerebral
ischemia: serial measurements of platelet function in cerebrovascular
parison of symptomatic and asymptomatic reinfarctions after small sub-
25. van Kooten F, Ciabattoni G, Patrono C, Dippel DW, Koudstaal PJ.
Platelet activation and lipid peroxidation in patients with acute ischemic
26. Grilli M, Piau A, Memo M, Spano PF. Neuroprotection by aspirin and
sodium salicylate through blockade of NF-κB activation. Science. 1996;
274:1383–1385.
27. Riepe M, Phys D, Kaischke K, Raupach A. Acetylsalicylic acid increases
tolerance against hypoxic and chemical hypoxia. Stroke. 1997;
28. Kuhn W, Muller T, Buttner T, Gerlach M. Aspirin as a free radical
scavenger: consequences for therapy of cerebrovascular ischemia.
M, Soler-Soler J. Previous aspirin use may attenuate the severity of the
manifestation of acute ischemic syndromes. Circulation. 1995:92:
1743–1748.
30. Ridker PM, Manson JE, Buring JE, Goldhaber SA, Hennekens CH.
Clinical characteristics of non-fatal myocardial infarction among indi-
viduals on prophylactic low-dose aspirin therapy. Circulation. 1991;84:
708–711.
31. Bornstein N, Krepov VG, Arnowich BD, Gorbulev AY, Treves TA,
Korczyn AD. Failure of aspirin treatment after stroke. Stroke. 1994;25:
275–277.
32. Hogendoorn EM, Jenkins CS, van Wijk EM, Vos J, ten Cate JW.
Sporontaneous platelet aggregation in cerebrovascular disease, II: charac-
33. Chayatte D, Chen TL. Patterns of failure of aspirin treatment in symptomatic
atherosclerotic carotid artery disease. Neurosurgery. 1990:26:
565–569.
34. Carvalho AC, Colman RW, Lees RS. Platelet function in hyperlipopro-
35. Chimowitz MI, Furlan AJ, Nayak S, Sila CA. Mechanism of stroke in
Relationship of cardiac disease to stroke occurrence, recurrence, and mor-
37. Chamorro A, Escobar G, Revilla M, Obach V, Vila N, Reverter JC,
Ordinas A. Ex vivo response to aspirin differs in stroke patients with
Effect of Prior Aspirin Use on Stroke Severity in the Trial of Org 10172 in Acute Stroke Treatment (TOAST)

for the TOAST Investigators

Stroke. 2001;32:2836-2840
doi: 10.1161/hs1201.099384

Stroke is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2001 American Heart Association, Inc. All rights reserved.
Print ISSN: 0039-2499. Online ISSN: 1524-4628

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://stroke.ahajournals.org/content/32/12/2836

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in *Stroke* can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to *Stroke* is online at:
http://stroke.ahajournals.org//subscriptions/