Caudoputamen Is Damaged by Hypocapnia During Mechanical Ventilation in a Rat Model of Chronic Cerebral Hypoperfusion

Etsuko Miyamoto, MD; Hidekazu Tomimoto, MD; Shin-ichi Nakao, MD; Hideaki Wakita, MD; Ichiro Akiyuchi, MD; Katsuichi Miyamoto, MD; Koh Shingu, MD

Background and Purpose—Postoperative brain dysfunction, such as delirium, is a common complication of anesthesia and is sometimes prolonged, especially in patients with cerebrovascular disease. In the present study we investigated the effect of hypocapnia during anesthesia on neuronal damage using a rat model of chronic cerebral hypoperfusion.

Methods—Chronic cerebral hypoperfusion was induced by clipping the bilateral common carotid arteries in male Wistar rats. Fourteen days after the operation, these animals were mechanically ventilated for 2 hours and then kept in suitable conditions for an additional 14 days. Twenty-four rats were assigned to 4 groups: those with chronic cerebral hypoperfusion with either hypocapnia or normocapnia during anesthesia, and those given sham operation with either hypocapnia or normocapnia. White matter lesions in the brain sections were evaluated with Klüver-Barrera staining. Proliferation of glial cells was estimated with the use of immunohistochemistry of glial fibrillary acidic protein, a marker for astroglia, and CD11b, a marker for microglia. Computer-assisted morphometry was applied to the immunohistochemical results of microtubule-associated protein 2 to evaluate the loss of neurons.

Results—The histological damage was localized almost exclusively in the white matter in the rats subjected to chronic cerebral hypoperfusion but without hypocapnia. Neuronal damage and astroglial proliferation occurred with aggravated white matter lesions in the caudoputamen in the rats with chronic cerebral hypoperfusion and hypocapnia. No lesions were observed in sham-operated rats with either hypocapnia or normocapnia.

Conclusions—These results indicate that hypocapnia during anesthesia causes tissue damage in the caudoputamen, which may be responsible for long-lasting postoperative delirium in patients with stroke and/or dementia. (Stroke. 2001;32:2920-2925.)

Key Words: caudate nucleus ■ cerebral hypoperfusion ■ delirium ■ hypocapnia ■ postoperative complications ■ putamen ■ rats

Brain dysfunction is a major postoperative complication. In most cases, however, obvious structural damage, such as cerebral infarction or bleeding, is rarely encountered. Delirium or acute confusion is a common postoperative complication and is characterized by a disturbance of consciousness and a cognitive impairment that persist for only a short period. A high incidence of postoperative delirium, ranging from 10% to 60% in the elderly, has been reported. Although delirium is usually a benign condition and <20% of episodes persist for >1 week, it occasionally develops to long-lasting or permanent cognitive impairment. Levkoff et al reported that only 4% of elderly patients with delirium had recovered completely at discharge, and 80% had residual impairment 6 months later. Thus, delirium is not necessarily a transient disorder, and in some cases there may be subtle structural brain damage leading to permanent cognitive impairment.

Many etiologic factors may influence postoperative delirium, such as aging, preoperative brain disease (including stroke and dementia), the type of surgery or anesthesia, hypoxia, and hypocapnia. In aged subjects and patients with vascular dementia, the cerebral blood flow (CBF) is inevitably reduced. In addition, hypocapnia induces a further reduction in CBF, eg, resulting in a 43% CBF decrease at a Paco₂ level of 19 mm Hg. Patients under mechanical ventilation during anesthesia are likely to experience hypocapnic conditions, and deliberate hyperventilation to reduce the intracranial pressure (ICP) is common in neuroanesthesia for patients with a brain tumor or cerebral hemorrhage. Therefore, we hypothesized that such a decrease in Paco₂ may be critical, especially in the elderly and/or in stroke patients.

A rat model of chronic cerebral hypoperfusion is well established as a model for vascular dementia and is charac-
terized by cognitive impairment and white matter (WM) lesions,10–15 which occur frequently in advancing age and in patients with previous episodes of stroke and cognitive impairment of presumed vascular origin.16 In the present study we investigated the effect of hypocapnia during mechanical ventilation on regional neuronal damage using this model.

Materials and Methods

Experimentation Models

Twenty-four male Wistar rats weighing 250 to 350 g were randomly assigned to 4 groups: chronic cerebral hypoperfusion with hypocapnia (group 1; \(n=6\)); chronic cerebral hypoperfusion with normocapnia (group 2; \(n=6\)); sham operation with hypocapnia (group 3; \(n=7\)); and sham operation with normocapnia (group 4; \(n=5\)). The procedures for the chronic cerebral hypoperfusion were approved by the animal research committee of Kansai Medical University.

The rats were anesthetized with 3% halothane in 50% \(\text{N}_2\text{O}\) and 50% \(\text{O}_2\) and were left to respirate spontaneously. The bilateral common carotid arteries were exposed through a midline cervical incision and double ligated with silk sutures. Sham-operated animals underwent the same surgical procedure but without bilateral carotid ligation. The rectal temperature was monitored and maintained between 36.5°C and 37.5°C with the use of a warm water mattress and a heating lamp during the surgical procedure. After the operation, the rats were kept under controlled environmental conditions (ambient temperature 23°C to 26°C, 12/12-hour light/dark cycle, lights on at 7 AM), and food and water were allowed ad libitum.

At 14 days after the ligation procedure, the rats were anesthetized and mechanically ventilated as follows. In group 1, anesthesia was induced by inhalation of a mixture of 4% halothane in 50% \(\text{N}_2\text{O}\) and 50% \(\text{O}_2\) through a mask. After the tracheal intubation, anesthesia was maintained with 2% halothane in 50% \(\text{N}_2\text{O}\) and 50% \(\text{O}_2\) and the rats were mechanically ventilated for 2 hours. The right femoral artery incision and double ligated with silk sutures. Sham-operated animals underwent the same surgical procedure but without bilateral carotid ligation. The rectal temperature was monitored and maintained between 36.5°C and 37.5°C with the use of a warm water mattress and a heating lamp during the surgical procedure. After the operation, the rats were kept under controlled environmental conditions (ambient temperature 23°C to 26°C, 12/12-hour light/dark cycle, lights on at 7 AM), and food and water were allowed ad libitum.

At 14 days after the ligation procedure, the rats were anesthetized and mechanically ventilated as follows. In group 1, anesthesia was induced by inhalation of a mixture of 4% halothane in 50% \(\text{N}_2\text{O}\) and 50% \(\text{O}_2\) through a mask. After the tracheal intubation, anesthesia was maintained with 2% halothane in 50% \(\text{N}_2\text{O}\) and 50% \(\text{O}_2\) and the rats were mechanically ventilated for 2 hours. The right femoral artery incision and double ligated with silk sutures. Sham-operated animals underwent the same surgical procedure but without bilateral carotid ligation. The rectal temperature was monitored and maintained between 36.5°C and 37.5°C with the use of a warm water mattress and a heating lamp during the surgical procedure. After the operation, the rats were kept under controlled environmental conditions (ambient temperature 23°C to 26°C, 12/12-hour light/dark cycle, lights on at 7 AM), and food and water were allowed ad libitum.

At 14 days after the ligation procedure, the rats were anesthetized and mechanically ventilated as follows. In group 1, anesthesia was induced by inhalation of a mixture of 4% halothane in 50% \(\text{N}_2\text{O}\) and 50% \(\text{O}_2\) through a mask. After the tracheal intubation, anesthesia was maintained with 2% halothane in 50% \(\text{N}_2\text{O}\) and 50% \(\text{O}_2\) and the rats were mechanically ventilated for 2 hours. The right femoral artery incision and double ligated with silk sutures. Sham-operated animals underwent the same surgical procedure but without bilateral carotid ligation. The rectal temperature was monitored and maintained between 36.5°C and 37.5°C with the use of a warm water mattress and a heating lamp during the surgical procedure. After the operation, the rats were kept under controlled environmental conditions (ambient temperature 23°C to 26°C, 12/12-hour light/dark cycle, lights on at 7 AM), and food and water were allowed ad libitum.

At 14 days after the ligation procedure, the rats were anesthetized and mechanically ventilated as follows. In group 1, anesthesia was induced by inhalation of a mixture of 4% halothane in 50% \(\text{N}_2\text{O}\) and 50% \(\text{O}_2\) through a mask. After the tracheal intubation, anesthesia was maintained with 2% halothane in 50% \(\text{N}_2\text{O}\) and 50% \(\text{O}_2\) and the rats were mechanically ventilated for 2 hours. The right femoral artery incision and double ligated with silk sutures. Sham-operated animals underwent the same surgical procedure but without bilateral carotid ligation. The rectal temperature was monitored and maintained between 36.5°C and 37.5°C with the use of a warm water mattress and a heating lamp during the surgical procedure. After the operation, the rats were kept under controlled environmental conditions (ambient temperature 23°C to 26°C, 12/12-hour light/dark cycle, lights on at 7 AM), and food and water were allowed ad libitum.

At 14 days after the ligation procedure, the rats were anesthetized and mechanically ventilated as follows. In group 1, anesthesia was induced by inhalation of a mixture of 4% halothane in 50% \(\text{N}_2\text{O}\) and 50% \(\text{O}_2\) through a mask. After the tracheal intubation, anesthesia was maintained with 2% halothane in 50% \(\text{N}_2\text{O}\) and 50% \(\text{O}_2\) and the rats were mechanically ventilated for 2 hours. The right femoral artery incision and double ligated with silk sutures. Sham-operated animals underwent the same surgical procedure but without bilateral carotid ligation. The rectal temperature was monitored and maintained between 36.5°C and 37.5°C with the use of a warm water mattress and a heating lamp during the surgical procedure. After the operation, the rats were kept under controlled environmental conditions (ambient temperature 23°C to 26°C, 12/12-hour light/dark cycle, lights on at 7 AM), and food and water were allowed ad libitum.

At 14 days after the ligation procedure, the rats were anesthetized and mechanically ventilated as follows. In group 1, anesthesia was induced by inhalation of a mixture of 4% halothane in 50% \(\text{N}_2\text{O}\) and 50% \(\text{O}_2\) through a mask. After the tracheal intubation, anesthesia was maintained with 2% halothane in 50% \(\text{N}_2\text{O}\) and 50% \(\text{O}_2\) and the rats were mechanically ventilated for 2 hours. The right femoral artery incision and double ligated with silk sutures. Sham-operated animals underwent the same surgical procedure but without bilateral carotid ligation. The rectal temperature was monitored and maintained between 36.5°C and 37.5°C with the use of a warm water mattress and a heating lamp during the surgical procedure. After the operation, the rats were kept under controlled environmental conditions (ambient temperature 23°C to 26°C, 12/12-hour light/dark cycle, lights on at 7 AM), and food and water were allowed ad libitum.

At 14 days after the ligation procedure, the rats were anesthetized and mechanically ventilated as follows. In group 1, anesthesia was induced by inhalation of a mixture of 4% halothane in 50% \(\text{N}_2\text{O}\) and 50% \(\text{O}_2\) through a mask. After the tracheal intubation, anesthesia was maintained with 2% halothane in 50% \(\text{N}_2\text{O}\) and 50% \(\text{O}_2\) and the rats were mechanically ventilated for 2 hours. The right femoral artery incision and double ligated with silk sutures. Sham-operated animals underwent the same surgical procedure but without bilateral carotid ligation. The rectal temperature was monitored and maintained between 36.5°C and 37.5°C with the use of a warm water mattress and a heating lamp during the surgical procedure. After the operation, the rats were kept under controlled environmental conditions (ambient temperature 23°C to 26°C, 12/12-hour light/dark cycle, lights on at 7 AM), and food and water were allowed ad libitum.

At 14 days after the ligation procedure, the rats were anesthetized and mechanically ventilated as follows. In group 1, anesthesia was induced by inhalation of a mixture of 4% halothane in 50% \(\text{N}_2\text{O}\) and 50% \(\text{O}_2\) through a mask. After the tracheal intubation, anesthesia was maintained with 2% halothane in 50% \(\text{N}_2\text{O}\) and 50% \(\text{O}_2\) and the rats were mechanically ventilated for 2 hours. The right femoral artery incision and double ligated with silk sutures. Sham-operated animals underwent the same surgical procedure but without bilateral carotid ligation. The rectal temperature was monitored and maintained between 36.5°C and 37.5°C with the use of a warm water mattress and a heating lamp during the surgical procedure. After the operation, the rats were kept under controlled environmental conditions (ambient temperature 23°C to 26°C, 12/12-hour light/dark cycle, lights on at 7 AM), and food and water were allowed ad libitum.

Physiological Variables

Of the animals that were subjected to chronic cerebral hypoperfusion, 2 of 8 died in group 1, 2 of 8 in group 2, 2 of 9 in group 3, and 1 of 6 in group 4. There were no significant differences in the mortality rate between groups. The \(\text{Paco}_2\) levels were significantly lower and the values of \(\text{pH}\) significantly higher in the hypocapnia groups (groups 1 and 3) than...
in the normocapnia groups (groups 2 and 4). The values of Pao₂ and body temperature were not significantly different among groups (Table 1).

CBF Measurement
The physiological variables (mean arterial pressure, heart rate, blood gases, and rectal temperature) during CBF measurement were similar to those in Table 1 in groups 1 and 3. The CBF values decreased significantly after the hyperventilation and subsequent hypocapnia in both sham-operated rats and rats with chronic cerebral hypoperfusion (Figure 1). These values gradually returned to baseline level when hyperventilation was discontinued. The CBF values were reduced by 25% after hyperventilation was started in the sham-operated rats (Figure 1A). In the rats with chronic cerebral hypoperfusion, the CBF values were reduced by 12% after hyperventilation (Figure 1B).

WM Rarefaction Grading
In the gray matter regions, scattered foci of microinfarcts were occasionally observed in the cerebral cortex, but the pyramidal neurons in the hippocampus showed no definite morphological changes in rats with chronic cerebral hypoperfusion, either with or without hypocapnia. As reported previously, chronic cerebral hypoperfusion alone caused an intense number of WM lesions in the optic tract and a moderate number in the corpus callosum and the fiber bundles of the caudoputamen. In addition, hypocapnia aggravated WM lesions exclusively in the caudoputamen in rats with chronic cerebral hypoperfusion (Table 2). There were no apparent gray matter and WM lesions in the sham-operated rats (groups 3 and 4), even with hypocapnia.

Immunohistochemistry
Neither chronic cerebral hypoperfusion nor hypocapnia independently reduced the MAP2 immunoreactive area in the

Table 1. Physiological Variables During Anesthesia

<table>
<thead>
<tr>
<th></th>
<th>Group 1</th>
<th>Group 2</th>
<th>Group 3</th>
<th>Group 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean arterial pressure, mm Hg</td>
<td>95±3</td>
<td>93±3</td>
<td>92±2</td>
<td>96±5</td>
</tr>
<tr>
<td>Heart rate, bpm</td>
<td>347±6</td>
<td>340±9</td>
<td>345±8</td>
<td>353±4</td>
</tr>
<tr>
<td>pH</td>
<td>7.61±0.02*</td>
<td>7.41±0.01</td>
<td>7.57±0.01*</td>
<td>7.39±0.01</td>
</tr>
<tr>
<td>Paco₂, mm Hg</td>
<td>22.6±1.2*</td>
<td>39.6±2.1</td>
<td>23.3±0.4*</td>
<td>38.5±2.0</td>
</tr>
<tr>
<td>Pao₂, mm Hg</td>
<td>185.0±12.6</td>
<td>191.4±23.0</td>
<td>212.7±20.4</td>
<td>180.7±39.9</td>
</tr>
<tr>
<td>Rectal temperature, °C</td>
<td>37.4±0.2</td>
<td>37.3±0.3</td>
<td>37.2±0.3</td>
<td>37.3±0.2</td>
</tr>
<tr>
<td>Glucose, mg/dL</td>
<td>128±4</td>
<td>132±4</td>
<td>131±5</td>
<td>125±3</td>
</tr>
</tbody>
</table>

Values are mean±SEM. *P<0.01 vs group 2, 4.

Figure 1. Left, Representative tracings of CBF profile after hyperventilation in a rat given a sham operation and a rat with chronic cerebral hypoperfusion. The figures on the y axis indicate the relative CBF value in arbitrary units. Right, CBF values before hyperventilation have been shown as 100% (white columns); black columns show CBF values after hyperventilation in the sham-operated rats (A) and in rats with chronic cerebral hypoperfusion (B). The mean results of 2 to 3 independent experiments are shown in each column.
brain region examined. However, hypocapnia induced a
significant decrease in the MAP2 immunoreactive area in the
cerebral cortex and the caudoputamen in group 1 (25.5 ± 2.2%
and 14.6 ± 0.2%, respectively) compared with those in group
2 (48.2 ± 1.8% and 41.2 ± 0.7%, respectively) (Figure 2).
Chronic cerebral hypoperfusion alone increased the number
of GFAP immunoreactive astroglia in the WM regions
including the optic tract, corpus callosum, and caudoputamen.
With hypocapnia, the GFAP immunoreactive astroglia
increased in number exclusively in the caudoputamen
(411 ± 40/0.3 mm²; mean ± SD, group 1) compared with those
in group 2 (244 ± 18/0.3 mm²) (Figure 3).
Immunohistochemistry of CD11b showed that microglia
were activated in the fiber bundle of the caudoputamen in rats
with chronic cerebral hypoperfusion either with or without
hypocapnia (Figure 4D and 4E, respectively) but not in
sham-operated animals (Figure 4F). Similarly, APP immuno-
reactive axons appeared in the fiber bundles of the caudopu-
tamen in rats with chronic cerebral hypoperfusion either with
or without hypocapnia (Figure 4G and 4H, respectively).
There were no APP immunoreactive axons in sham-operated
animals (Figure 4I).

There were no significant differences in the immunohisto-
chemistry of CD11b and APP between groups 3 and 4.

Discussion

The present study revealed that damage to the caudoputamen
was increased by hypocapnia in rats with chronic cerebral
hypoperfusion, whereas no brain regions were injured by
hypocapnia in the sham-operated rats. WM lesions are

<table>
<thead>
<tr>
<th>Group 1</th>
<th>Group 2</th>
<th>Group 3</th>
<th>Group 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optic tract</td>
<td>2.8 ± 0.2*</td>
<td>3.0 ± 0.0*</td>
<td>0.0 ± 0.0</td>
</tr>
<tr>
<td>Corpus callosum</td>
<td>1.4 ± 0.2*</td>
<td>1.4 ± 0.2*</td>
<td>0.1 ± 0.1</td>
</tr>
<tr>
<td>Caudoputamen</td>
<td>2.0 ± 0.0*†</td>
<td>1.0 ± 0.0*</td>
<td>0.3 ± 0.2</td>
</tr>
</tbody>
</table>

Values are mean ± SEM.
*Significant at P < 0.05 vs group 3, 4.
†Significant at P < 0.05 vs group 2.

Figure 2. Histograms of the MAP2 immunoreactive area in a
unit area of 0.09 mm² in gray matter regions.

Figure 3. Histograms of the numerical density of GFAP immu-
noreactive astroglia in WM regions.

Figure 4. Photomicrographs of Klüver-Barrera staining (A
through C) and immunohistochemistry of CD11b (D through F)
and APP (G through I) in the caudoputamen. The animals were
from group 1 (A, D, G), group 2 (B, E, H), or group 3 (C, F, I).

Note the marked vacuole formation in the fiber bundles of the
caudoputamen in rats with chronic cerebral hypoperfusion and
hypocapnia (A) in comparison to rats with either chronic cere-
bral hypoperfusion and normocapnia (B) or sham operation and
hypocapnia (C). Photomicrographs of group 4 are not shown.
Bars = 30 μm.
Use of this procedure invariably decreases the CBF to 40% to 82% of normal values over a prolonged period.14,21,22 Our previous studies revealed that the WM is preferentially damaged in these rats with an increase in reactive astroglia and activated microglia and that WM lesions are found mostly in the optic nerve and optic tract and to a lesser extent in the medial part of the corpus callosum, anterior commissure, internal capsule, and caudoputamen.10–14 Furthermore, these animals are cognitively impaired in the Morris water maze and radial maze tasks.23,24 All of these features are characteristic of patients with cerebrovascular insufficiency, but this model also has a few drawbacks, such as the abrupt reduction in CBF and the absence of hypertensive small-vessel disease. In the present study we confirmed that chronic cerebral hypoperfusion induced WM lesions with only slight damage in the gray matter. We also demonstrated that hypocapnia aggravates rarefaction and astroglial proliferation exclusively in the caudoputamen (Table 2, Figures 3 and 4).

APP, an axonally transported protein, accumulates in regions with disturbed axonal transport and can be used as a marker for WM lesions.25–28 Accumulation of APP immunoreactive fibers in the caudoputamen seems to be indicative of the rarefaction and astrogliosis in this region. In the present experimental conditions, microglial activation was not enhanced by hypocapnia. However, microglial cells, already activated in chronic hypoperfusion alone, may play a role in the pathogenesis of WM lesions, since they are a key source of cytokines and cytotoxins, such as proteases, reactive oxygen radicals, and nitrogen intermediates.29–34

MAP2, which stabilizes microtubules and helps to regulate microtubule spacing,35 is located almost exclusively in the neuronal perikarya and dendrites. Therefore, a decrease in MAP2 staining in the caudoputamen and the cerebral cortex clearly indicated that the brain damage had expanded from the WM to the gray matter (Figure 2). WM is usually spared from insults in transient global ischemia models, in which CBF is reduced to 5% of normal values. The neuronal damage occurs in the gray matter, including the hippocampus, the cerebral cortex, the caudoputamen, and the ventrolateral part of the thalamus in association with reactive astrogliosis and activation of microglia in the same regions.36–40 Conversely, the gray matter lesions in chronic cerebral hypoperfusion are mild or scarce,10,21,41 suggesting that regional tissue vulnerability depends on the mode of ischemic insult. Therefore, additional gray matter damage after hypocapnia, as evidenced by the loss of MAP immunoreactivity in the caudoputamen and the cerebral cortex, may indicate an overlay of acute ischemic insult onto chronic ischemic damage.

The caudoputamen receives input from the frontal and temporoparietal cortices and sends output fibers to the globus pallidus and the other regions of the basal ganglia.32,42 Recent studies have revealed that the caudoputamen plays an essential role in the acquisition of motor, perceptual, and cognitive skills and in the spatial working memory.44–49 Thus, the ischemic damage in the caudoputamen as a result of hypocapnia may impair striatocortical neural networks and may be responsible for the postoperative prolonged delirium.

Conclusions

The present study demonstrated that hypocapnia induced WM rarefaction and astroglial proliferation in the caudoputamen and that neuronal damage also occurred in the cerebral cortex in a rat model of chronic cerebral hypoperfusion. These observations indicate that in the elderly and/or those with cerebrovascular disease, hyperventilation may cause brain damage and may result in irreversible cognitive impairment.

Acknowledgments

This study was supported by grant-in-aid No. C-13671621 for scientific research from the Japan Society for the Promotion of Science, Tokyo, Japan. We are indebted to Hitomi Nakabayashi for her excellent technical assistance.

References

Caudoputamen Is Damaged by Hypocapnia During Mechanical Ventilation in a Rat Model of Chronic Cerebral Hypoperfusion
Etsuko Miyamoto, Hidekazu Tomimoto, Shin-ichi Nakao, Hideaki Wakita, Ichiro Akiguchi, Katsuichi Miyamoto and Koh Shingu

Stroke. 2001;32:2920-2925
doi: 10.1161/hs1201.100216

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://stroke.ahajournals.org/content/32/12/2920

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Stroke can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Stroke is online at:
http://stroke.ahajournals.org/subscriptions/