Intracisternal Increase of Superoxide Anion Production in a Canine Subarachnoid Hemorrhage Model

Takashi Mori, DVM, PhD; Kazuya Nagata, MD, DMSc; Terrence Town, BA; Jun Tan, MD, PhD; Toru Matsui, MD, DMSc; Takao Asano, MD, DMSc

Background and Purpose—Reactive oxygen species (ROS) are thought to be primary in the pathogenesis of cerebral vasospasm after subarachnoid hemorrhage (SAH). However, as direct evidence of ROS has not yet been demonstrated in cerebral vasospasm, we sought to substantiate superoxide anion (O_2^-) generation in the subarachnoid space after SAH using a modification of Karnovsky’s manganese/diaminobenzidine (Mn$^{2+}$/DAB) technique.

Methods—SAH or sham operation was induced according to a 2-hemorrhage model in a total of 24 beagle dogs. On day 2 or 7 after SAH or sham operation, dogs were intrathecally infused with buffer containing Mn$^{2+}$ and DAB, and the brain stem was prepared for light and electron microscopy. Possible colocalization of ferrous (Fe$^{2+}$) or ferric (Fe$^{3+}$) iron ions with O_2^- was also examined with the use of Turnbull blue or Berlin blue staining, respectively.

Results—Light microscopy revealed amorphous, amber deposits within the subarachnoid hematoma, the periarterial space, and the tunica adventitia of the basilar artery on days 2 and 7 after SAH. O_2^- deposits were eliminated by addition of superoxide dismutase or exclusion of either Mn$^{2+}$ or DAB from the perfusate, confirming the specificity of the reaction. These deposits were colocalized with blue reaction deposits indicating Fe$^{2+}$ and Fe$^{3+}$. Within the subarachnoid space, O_2^- indicating electron-dense fine granules were preferentially located around degenerated erythrocytes and, secondarily, infiltrating macrophages and neutrophils.

Conclusions—We show direct evidence for enhanced production of O_2^- and Fe$^{2+}$/Fe$^{3+}$ iron ions in the subarachnoid space after SAH, lending further support to the pathogenic role of ROS in cerebral vasospasm after SAH. (Stroke. 2001;32: 636-642.)

Key Words: reactive oxygen species ■ subarachnoid hemorrhage ■ superoxides ■ vasospasm, intracranial ■ dogs

Lipid peroxidation and other consequences of increased levels of reactive oxygen species (ROS) have been implicated in the etiology of cerebral vasospasm after subarachnoid hemorrhage (SAH).1–3 It is generally thought that iron-catalyzed Haber-Weiss and Fenton reactions are implicated in the etiology of cerebral vasospasm after subarachnoid hemorrhage (SAH).1–3 It is generally thought that the antioxidants have been shown to attenuate cerebral vasospasm after SAH using a modification of Karnovsky’s manganese/diaminobenzidine (Mn$^{2+}$/DAB) technique.

Evidence for ROS production in vivo after SAH has been assessed by indirect approaches such as measurement of lipid peroxide production and quantification of superoxide dismutase (SOD) and glutathione peroxidase activities.18 Although more direct approaches have been used for the detection of ROS in brain tissue, such as nitroblue tetrazolium,19 electron spin resonance,20 fluorochemical sensor,21 and histochemical methods,22 direct detection in situ of ROS, including O_2^-, has not yet been performed for cerebral vasospasm after SAH.

In this study we used a modification of Karnovsky’s manganese/diaminobenzidine (Mn$^{2+}$/DAB) technique that we have previously reported.22 This method yields an amber osmiophilic polymer that is formed in the presence of O_2^-, Mn$^{2+}$, and DAB and can be visualized under both light and electron microscopes.23 Using this technique, we sought to elucidate in this study the major sites and cellular species
responsible for O_2^- production in the subarachnoid space after SAH. As the Haber-Weiss and Fenton reactions require iron ions as cofactors to yield other species of ROS, we also investigated whether Fe$^{2+}$ or Fe$^{3+}$ iron ions coexisted with O_2^-, using Turnbull blue or Berlin blue staining, respectively.

Materials and Methods

Reagents and Buffer Compositions
Reagent-grade MnCl$_2$, C$_6$H$_5$Na$_3$O$_7$, CaCl$_2$, KCl, NaCl, NaN$_3$, NaOH, 0.2 mol/L phosphate buffer solution (pH 7.4), Tris, and 3,3'-DAB were obtained from Sigma. Glutarylaldehyde and paraformaldehyde were purchased from TAAB Laboratories Equipment. Buffer (solution A, adjusted to pH 7.4 by titration with 0.5N NaOH and then filtered) contained MnCl$_2$ (40 mmol/L), C$_6$H$_5$Na$_3$O$_7$ (40 mmol/L), CaCl$_2$ (2 mmol/L), KCl (4 mmol/L), Tris (4 mmol/L), and NaN$_3$ (1 mmol/L), as previously reported. The DAB stock solution was made by dissolving DAB in distilled water (10 mg DAB per milliliter). To prevent DAB precipitation, DAB stock solution was made by slowly adjusting the pH to 5.0 with the drop-by-drop addition of 0.5N NaOH (approximately 3 mL/100 mL) during vigorous stirring (solution B). The final Mn$^{2+}$/DAB buffer containing 2.5 mmol/L DAB was prepared immediately before use by mixing solutions A and B together in a 9:1 ratio. To confirm that positive reaction indicated the presence of O_2^-, a Mn$^{2+}$/DAB buffer containing human recombinant Cu/Zn superoxide dismutase (hrSOD) and separate buffers containing no Mn$^{2+}$ (non-Mn$^{2+}$) or no DAB (non-DAB) were prepared. HrSOD (kindly provided by Nippon Kayaku Co, Tokyo, Japan; lot No. 102350) was dissolved immediately before use in the Mn$^{2+}$/DAB buffer to a final concentration of 5×10^4 U/mL. In the non-Mn$^{2+}$ buffer, 80 mmol/L NaCl replaced the 40 mmol/L MnCl$_2$. In the non-DAB buffer, an equal amount of distilled water replaced the DAB stock solution.

Surgical Procedures
Animal housing and care and the present protocols complied with the Principles of Laboratory Animal Care and the Guide for the Care and Use of Laboratory Animals (Department of Health and Human Services publication No. [NIH] 85-23, revised 1985) and have previously been approved by the Animal Use Ethical Committee of the Saitama Medical School.

Subarachnoid Hemorrhage Model
Twenty-four adult beagle dogs of either sex, weighing 10 to 15 kg, were randomly assigned to treatment groups. Animals were anesthetized with injection of sodium pentobarbital (30 mg/kg IV) or isoflurane, intubated, and fixed in a stereotaxic device. Animals were maintained by mechanical ventilation with room air throughout the experiment. To rule out fluctuation of diameter of the cerebral artery due to variation in PCO$_2$, arterial blood gas levels were maintained within physiological ranges during the course of the procedure. Additionally, rectal temperature was kept within the normal range with the use of a feedback-regulated heating pad. With an aspetic technique, the right vertebral artery was cannulated with a polyethylene catheter (0.86 mm), through which vertebral angiography (baseline angiogram) was performed with the use of 8 mL meglumine diatrizoate at a rate of approximately 3 mL/s by manual injection. SAH (first induction=day 0) was produced according to the 2-hemorrhage canine model of SAH. Briefly, 0.6 mL/kg body wt of autologous, nonheparinized fresh arterial blood was injected percutaneously into the cisterna magna over 1 minute, followed by removal of one half of that volume of cerebrospinal fluid. Animals were maintained in the prone position with the neck flexed 30° down for 30 minutes to allow the injected blood to accumulate in the preopticine cistern. All animals were treated with antibiotics and other postoperative care, including regular wound cleaning, during the course of the experiment. The cisternal injection of arterial blood was repeated 48 hours later by the same method. Additional angiography was performed to confirm the narrowing of the basilar artery on day 2 or 7. In the animals subjected to sham treatment, an identical amount of physiological saline was injected into the cisterna magna, and angiography was performed on days 2 and 7 according to the method described below.

Evaluation of the Basilar Artery Diameter
The diameter of the basilar artery was measured at 5 predetermined locations along the vessel on the angiogram with an optical micrometer. Examination of all films was performed in a blind fashion by a single investigator. Arterial narrowing on the angiogram was expressed as a percentage of the basilar artery diameter of the baseline angiogram obtained on day 0 in the same animals, and the accumulated angiography data in SAH and sham groups were expressed as mean±SE. For statistical comparisons, ANOVA was used. A P value of <0.05 was considered statistically significant.

Intrathecal Perfusion Procedure
After angiography on day 2 or 7, a 4-cm-long midline skin incision was made from the external occipital protuberance to the atlanto-occipital membrane. Through a small incision made in the membrane, 2 silicon catheters (1.2 mm in diameter, 10 cm long) were separately inserted into either side of the cerebelomodular cisterns. One was connected to the perfusion tube, while the other was connected to the draining tube. The length of the catheters in the subarachnoid space was approximately 1.5 cm, which was sufficient to reach the preopticine cistern. The opening of the atlanto-occipital membrane was made in a watertight fashion by the use of a surgical adhesive material. Then the basal cistern was perfused for 10 minutes with 10 mL Mn$^{2+}$/DAB buffer on day 2 (group 1; $n=6$) or 7 (group 2; $n=6$). Separate groups of animals were similarly perfused on day 7 with Mn$^{2+}$/DAB buffer containing hrSOD (group 3; $n=3$), non-Mn$^{2+}$ (group 4; $n=3$), or non-DAB buffer (group 5; $n=3$). Animals subjected to sham treatment were perfused with Mn$^{2+}$/DAB buffer on day 7 (group 6; $n=3$). The preliminary study, in which 3 dogs were subjected to perfusion using identical amounts of dye (4% toluidine blue–saline) solution, had shown that the basal as well as the preopticine cisterns were satisfactorily perfused by the above technique.

Pathological Studies
After intrathecal perfusion with the designated perfusate, animals were euthanized by an injection of sodium pentobarbital (50 mg/kg IV) followed by exsanguination. The basilar artery, together with the brain stem was immediately harvested and processed for light and electron microscopy. Sections for light microscopy were immersed in a phosphate buffer containing 4% paraformaldehyde, routinely embedded in paraffin, sectioned (3 μm), counterstained with 4% methyl green, and mounted. Additionally, to examine the coexistence of Fe$^{2+}$ or Fe$^{3+}$ iron ions together with O_2^-, either Turnbull blue or Berlin blue staining was done according to standard protocols. Sections for electron microscopy were trimmed into small pieces (approximately $1\times1\times2$ mm), fixed in 2.5% glutaraldehyde followed by 1% osmium tetroxide fixation, dehydrated through a graded series of ethanol solutions, transferred to propylene oxide, and embedded in Epon-Araldite. Ultrathin sections (70 nm) were double-stained with uranium acetate and lead citrate and were examined at 75 kV with a Hitachi H-7000 transmission electron microscope.

Evaluation of O_2^- and Fe$^{2+}$/Fe$^{3+}$ Reaction Products
Using light microscopy, amounts of O_2^- and Fe$^{2+}$/Fe$^{3+}$ reaction products were graded in a semiquantitative fashion as absent (−), slight (+), mild (+ +), or moderate (+ + +) in the subarachnoid space as well as the basilar arterial wall in a blinded fashion. Sections graded as absent or slight were further examined by electron microscopy. Statistical analysis was performed by the Kruskal-Wallis test followed by post hoc comparison by the Mann-Whitney U test. A P value of <0.05 was considered statistically significant.
Results

Evaluation of the SAH Model and Measurement of Basilar Artery Diameter

During the course of the study, no animals died, and no focal neurological deficits developed. On postmortem examination of animals subjected to SAH, the basilar artery was embedded in the clot of injected autologous blood that encased the surrounding cisterns. None of the animals subjected to sham treatment had SAH in the basal cistern.

In animals subjected to sham treatment, there was no significant time-dependent change in the basilar artery diameter (99.3±2.4% [mean±SE] on day 2 and 98.5±2.1% on day 7; n=3 for group 6; P>0.05). A statistically significant difference in the basilar artery diameter was revealed between the SAH groups and the sham treatment group (P<0.01 for each comparison) on either day 2 or 7. In animals subjected to SAH, the basilar artery diameter was reduced to 72.1±2.8% of the control on day 2 (data assembled from groups 1 to 5; n=21). The reduction in basilar artery diameter on day 7 (58.6±3.2%, data assembled from groups 2 to 5; n=15) was significantly greater than that on day 2 (P<0.05).

Histochemical Distributions of Reaction Products of \(\cdot O_2^- \), \(Fe^{2+} \), and \(Fe^{3+} \)

Dotlike or speckled amber reaction deposits were visible even by surgical microscopy in groups 1 and 2 (Mn\(^{2+}\)/DAB buffer) at the time of death on days 2 and 7 after SAH. Interestingly, small amounts of dotlike amber reaction products were observed on the dorsal and ventral surfaces of the brain stem in group 6 (sham treatment). Reaction deposits were not observed in groups 3 (Mn\(^{2+}\)/DAB buffer containing hrSOD), 4 (non-Mn\(^{2+}\)), and 5 (non-DAB), no reaction deposits of \(\cdot O_2^- \) were observed in either the subarachnoid space or the basilar arterial wall (Figure 1). In groups 1 to 5, Turnbull blue or Berlin blue staining revealed the presence of a significant amount of amorphous blue reaction deposits, indicating the presence of \(Fe^{2+} \) or \(Fe^{3+} \) iron ions, around the basilar artery and degenerated erythrocytes in the subarachnoid space. It is important to note that these blue reaction deposits were found in the close vicinity of \(\cdot O_2^- \) reaction deposits. Considerable amounts of reaction deposits were also observed within the tunica adventitia of the basilar arterial wall (Figure 2). While the aforementioned pattern of colocalization of \(\cdot O_2^- \) reaction deposits and \(Fe^{2+} \) or \(Fe^{3+} \) reaction deposits within the subarachnoid space and the basilar arterial wall was similar between days 2 and 7, the amount of those deposits was slightly, but not significantly, increased on day 7. In group 6, no \(Fe^{2+} \) or \(Fe^{3+} \) reaction products were observed in either the subarachnoid space or the basilar arterial wall.

Electron microscopic examination in groups 1 and 2 revealed that electron-dense fine granules of varying size indicating \(\cdot O_2^- \) were abundantly present in the subarachnoid space, predominately located around degenerated erythrocytes and, much more secondarily, in the vicinity of infiltrating macrophages and neutrophils. Considerable numbers of granules were attached to the outer surface of the cytoplasmic membrane of those cells. In the basilar arterial wall, \(\cdot O_2^- \) reaction deposits were also detected in the vicinity of infiltrating macrophages and neutrophils in the tunica adventitia of the basilar artery (Figure 3.). In group 6 on day 7, small amounts of \(\cdot O_2^- \) reaction products were present in the subarachnoid space juxtaposed to the arachnoid membrane and the pia mater. No \(\cdot O_2^- \) reaction deposits were identified by electron microscopy in group 3, 4, or 5 in either the subarachnoid space or the basilar arterial wall.

In the basilar arterial wall of groups 1 to 5, mild to moderate pathological changes were observed in endothelial and smooth muscle cells on days 2 and 7. These changes include increased number of a variety of cytoplasmic organelles.

\(-O_2^-\) and \(Fe^{2+}/Fe^{3+}\) Iron Reaction Deposits After SAH

<table>
<thead>
<tr>
<th>Group</th>
<th>No. of Animals</th>
<th>Experimental Condition</th>
<th>Perfusion Solution</th>
<th>Subarachnoid Space</th>
<th>Tunica Adventitia of Basilar Artery</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-</td>
<td>±</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>SAH (day 2)</td>
<td>Mn(^{2+})/DAB</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>SAH (day 7)</td>
<td>Mn(^{2+})/DAB</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>SAH (day 7)</td>
<td>Mn(^{2+})/DAB with hrSOD</td>
<td>*3/0</td>
<td>0/0</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>SAH (day 7)</td>
<td>Non-Mn(^{2+})</td>
<td>*3/0</td>
<td>0/0</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>SAH (day 7)</td>
<td>Non-DAB</td>
<td>*3/0</td>
<td>0/0</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>Sham (day 7)</td>
<td>Mn(^{2+})/DAB</td>
<td>0/3*</td>
<td>*3/0</td>
</tr>
</tbody>
</table>

Reaction deposit amounts were graded as absent (−), slight (+), mild (++), or moderate (+++).

Data are represented as \(\cdot O_2^-/Fe^{2+} \) and \(Fe^{3+} \) reaction deposits since differences were not apparent when comparing \(\cdot O_2^- \) reaction deposits colocalized with \(Fe^{2+} \) vs those found with \(Fe^{3+} \) deposits.

*Significant (P<0.05) differences comparing each experimental group with group 1 or 2.
cytoplasmic vacuoles containing fine granules, myelin figures or more amorphous material, and detached intracellular junctions. These pathological findings appeared more conspicuous with time. Furthermore, in groups 1 and 2, although moderate vacuole formation and destruction of collagen fibers in the tunica adventitia close to the deposits was observed, there were no necrotic cell changes in the tunica media and intima. In addition, small numbers of activated macrophages were observed in the tunica adventitia. In group 6, no abnormal findings were observed in any of the specimens.

Discussion
It is becoming increasingly substantiated that ROS and subsequent lipid peroxidation participate in the etiology of cerebral vasospasm after SAH. However, as direct evidence has been lacking regarding generation of ROS in the subarachnoid space after SAH, we wished to develop and characterize a direct method to visualize ROS, and in particular \(\ce{O_2^-} \), after SAH induction. Among a variety of methods to detect ROS, we chose a modification of Karnovsky’s Mn\(^{2+}\)/DAB technique for the following reasons. First, the detection of \(\ce{O_2^-} \) is of utmost importance because it is the initially generated species of ROS leading to subsequent generation of other ROS. Second, the aforementioned technique can be combined with other histochemical methods to examine the coexistence of \(\ce{Fe^{2+}} \) and \(\ce{Fe^{3+}} \) iron ions, which are critical cofactors for the Haber-Weiss and Fenton reactions, with \(\ce{O_2^-} \). Third, light and electron microscopic examination is expected to clarify the topographical distribution of \(\ce{O_2^-} \) and iron ions within the subarachnoid space, thereby helping to identify the origin as well as the immediate target of \(\ce{O_2^-} \).

By the use of the aforementioned technique, we were able to confirm that SAH leads to generation of \(\ce{O_2^-} \) as follows.
Light and electron microscopy revealed that $\cdot O_2^-$ reaction deposits were primarily located around erythrocytes. However, a significant amount of deposits was also observed around infiltrating macrophages and neutrophils in the extracellular space of the subarachnoid hematoma, the periarterial space, and the tunica adventitia of the basilar artery on days 2 and 7 after SAH. Furthermore, Turnbull blue and Berlin blue staining revealed that these $\cdot O_2^-$ reaction deposits were tightly colocalized with Fe$^{2+}$ or Fe$^{3+}$ reaction deposits, providing evidence that Haber-Weiss and Fenton reactions are taking place in the subarachnoid space after SAH.

Confirmation of $\cdot O_2^-$ Reaction Deposits

The rationale of the histochemical technique for the detection of $\cdot O_2^-$ production is as follows25,26:

1. $\cdot O_2^- + Mn^{2+} + 2H^+ \rightarrow H_2O_2 + Mn^{3+}$
 \[(K_1 = 6 \times 10^6 \text{ mol/L}^{-1} \text{s}^{-1}) \]
2. $\cdot O_2^- + SOD \rightarrow \frac{1}{2} H_2O_2 + \frac{1}{2} O_2 + SOD$
 \[(K_2 = 10^9 \text{ mol/L}^{-1} \text{s}^{-1}) \]

Reactions 1 and 2 are competitive; however, the rate constant (K_2) of reaction 2 is 3 orders of magnitude greater than the rate constant (K_1) of reaction 1. Thus, if reaction 1 is halted by the addition of a nonlimiting amount of SOD (experimental group 3), reaction deposits formed in the absence of SOD (experimental groups 1 and 2) could be interpreted as specific evidence of $\cdot O_2^-$ production. Such a confirmatory strategy revealed that, in dogs subjected to SAH, $\cdot O_2^-$ reaction deposits were completely diminished when an excess amount of hrSOD was added to the Mn$^{2+}$/DAB buffer (experimental group 3). As additional controls to determine the specificity of the reaction deposits produced by the complete reaction buffer, we eliminated DAB or Mn$^{2+}$ from the perfusion buffer (experimental groups 4 and 5). As expected, no reaction deposits were present in these conditions. Additionally, sodium azide (1 mmol/L, a concentration at which the enzymatic activities of CuZn SOD or Mn SOD would be decreased) was added to the perfusion buffer (experimental groups 6 and 7). Again, no reaction deposits were detected in these conditions.

Figure 2. Coronal sections stained with Turnbull blue from dogs after SAH treatment. These sections were stained with the ferrous ion (Fe$^{2+}$)-specific Turnbull blue stain, and the basilar artery (A) and subarachnoid space (B) are shown. In both regions, $\cdot O_2^-$ reaction deposits were detected together with amorphous, blue reaction deposits of Fe$^{3+}$. Magnification \times100.

Figure 3. Electron micrograph shows the subarachnoid space on day 7 after SAH from a dog perfused with Mn$^{2+}$/DAB buffer. Numerous reaction deposits of varying size were present in the subarachnoid space. These electron-dense granules were detected mainly in the extracellular space, in close apposition to the cytoplasmic membranes of infiltrating macrophages and neutrophils. Bar $= 4 \ \mu m$.

are not inhibited\(^{27}\) was added to all perfusates to block the nonspecific osmotic polymerization between DAB and endogenous peroxidase, catalase, and mitochondrial cytochrome oxidase enzymes.\(^{23}\) Furthermore, to examine the possibility of nonspecific polymerization of DAB by endogenous \(\text{H}_2\text{O}_2\), we added \(3\% \text{H}_2\text{O}_2\) to the \(\text{Mn}^{2+}/\text{DAB}\) buffer. The addition of \(\text{H}_2\text{O}_2\) did not elicit the formation of amber reaction deposits. Taken together, our results indicate that the reaction deposits observed in experimental groups 1 and 2 are specifically due to enhanced production of \(\cdot\text{O}_2^{-}\). Noteworthy is the finding that small numbers of \(\cdot\text{O}_2^{-}\) reaction deposits were observed in the subarachnoid space abutting the arachnoid and pia mater in sham-treated animals subjected to perfusion with the \(\text{Mn}^{2+}/\text{DAB}\) buffer (experimental group 6). The aforementioned result may be consonant with the basic, physiological production of \(\cdot\text{O}_2^{-}\) in the subarachnoid space, which may have been enhanced as a response to sham operation.

Possible Origin of \(\cdot\text{O}_2^{-}\) and \(\text{Fe}^{2+}/\text{Fe}^{3+}\) Iron Ions

Although oxyHb liberated into the subarachnoid space through clot lysis has been deemed to be the primary source of ROS and iron ions, this thesis has suffered from a lack of direct evidence. In this regard, the present study provides histochemical evidence for enhanced production of \(\cdot\text{O}_2^{-}\) and its coexistence with \(\text{Fe}^{2+}\) or \(\text{Fe}^{3+}\) iron ions in the subarachnoid space on days 2 and 7 after SAH. While \(\cdot\text{O}_2^{-}\) reaction deposits were detected within the subarachnoid hematoma, the periarterial space, and the tunica adventitia of the basilar artery, they were particularly abundant around degenerated erythrocytes and, secondarily, infiltrating macrophages and neutrophils. However, we did not detect deposits in the tunica media or intima. In this regard, it is important to note whether the \(\text{Mn}^{2+}/\text{DAB}\) perfusate used can freely penetrate into the smooth muscle and endothelial cell layers. As DAB is poorly able to cross the blood-brain barrier and arterial wall, it is likely that this lack of detection may be related to limited distribution of \(\text{Mn}^{2+}/\text{DAB}\) perfusate when applied to the subarachnoid space. Additionally, as the life of \(\cdot\text{O}_2^{-}\) is considerably short, it remains possible that this species had already decayed in these regions before detection. Therefore, we cannot assuredly exclude the possibility that \(\cdot\text{O}_2^{-}\) is produced in the media and endothelial cells of the vascular wall after SAH.

Regarding the cellular source(s) of \(\cdot\text{O}_2^{-}\), they were particularly abundant around degenerated erythrocytes and, less so, near infiltrating macrophages and neutrophils. The aforementioned result indicates that \(\cdot\text{O}_2^{-}\) is derived not only from autoxidation of oxyHb but also from infiltrating activated macrophages and neutrophils. In this regard, it is interesting to note that intrathecal injection of tacle (crystallized hydrous magnesium silicate) in dogs induces severe foreign body (nonspecific inflammatory) reaction in the subarachnoid space accompanied by significant arterial narrowing and structural damage, thereby mimicking in many ways cerebral vasospasm after SAH, but without evidence of extravasated erythrocytes. These arterial changes were significantly attenuated by intrathecal administration of SOD, suggesting that foreign body reaction mediated via infiltrating macrophages and neutrophils may contribute to cerebral vasospasm.\(^{3}\) Nonetheless, data presented herein support the hypothesis that \(\cdot\text{O}_2^{-}\) as a result of autoxidation of extravasated erythrocyte-derived Hb is the primary contributor to the pathogenesis of cerebral vasospasm after SAH.

Finally, it seems likely that the main source of \(\text{Fe}^{2+}\) or \(\text{Fe}^{3+}\) iron products in this study is lyzate from subarachnoid blood clots, although an alternate possibility is that some \(\text{Fe}^{2+}\) or \(\text{Fe}^{3+}\) iron ions were released from degenerating infiltrating macrophages during erythropagocytosis, which is known to occur in SAH.

Possible Pathogenetic Role of Intracisternally Generated \(\cdot\text{O}_2^{-}\) and \(\text{Fe}^{2+}/\text{Fe}^{3+}\) Iron Ions

Mounting evidence suggests that oxyHb has a wide spectrum of biological actions that include the following: (1) generation of ROS, (2) a direct vasoconstrictive effect ex vivo, and (3) scavenging of NO. The chemical pathway whereby oxyHb leads to the ROS cascade together with \(\text{Fe}^{2+}\) or \(\text{Fe}^{3+}\) iron ions is based on the Haber-Weiss and Fenton reactions. The importance of the present study lies in the fact that it demonstrated the coexistence of \(\cdot\text{O}_2^{-}\) with \(\text{Fe}^{2+}\) or \(\text{Fe}^{3+}\) iron ions. Such an environment certainly favors the occurrence of Haber-Weiss or Fenton reactions, leading to generation of the most harmful species of ROS, ie, \(\cdot\text{OH}\).\(^{5,6}\) Furthermore, peroxynitrite generation as a consequence of the direct interaction between NO and \(\cdot\text{O}_2^{-}\) may also be an important ROS contributor to the pathogenesis of SAH, as its formation is approximately 3.5 times faster than its dismutation by SOD.\(^{28,29}\) Collectively, ROS initiate oxidative damage of DNA, mitochondria, and, most importantly, membrane phospholipids. Lipid peroxidation, in turn, brings about the activation of membrane phospholipase A\(_2\), release of arachidonic acid, intercellular accumulation of diacylglycerol, and activation of protein kinase C.\(^{30–32}\) Although the generation of \(\cdot\text{O}_2^{-}\) in the present study was detected only in the adventitia of the vascular wall and subarachnoid space due to technical limitations, markedly increased levels of \(\cdot\text{O}_2^{-}\) may cause an imbalance of endothelial vasoactivity (induction of vasoconstriction when the ratio of \(\cdot\text{O}_2^{-}\) to NO is increased)\(^{9}\) as well as upregulation of adhesion molecules (such as intercellular adhesion molecule-1 [ICAM-1] and vascular cell adhesion molecule-1 [VCAM-1]),\(^{33}\) leading to microcirculatory derangement. To conclude that ROS are primary in the pathogenesis of cerebral vasospasm after SAH, however, further experiments are warranted to detect ROS, including \(\cdot\text{O}_2^{-}\), in the arterial wall. Nonetheless, the present study is the first step toward direct evidence of ROS in the pathogenesis of cerebral vasospasm after SAH.
role of the Fe$^{2+}$ ion in the pathogenesis of cerebral vasospasm, as ROS formation requires the ferrous moiety and Fe$^{2+}$ is a potent trapping agent for NO. In this regard, the histochemical evidence presented in this report may provide one mechanism to explain why the Fe$^{2+}$ chelator 2,2′-dipyridyl appears to prevent delayed vasospasm after SAH.

In conclusion, the present study provides histochemical evidence for enhanced production of O$_2^-$ and Fe$^{2+}$/Fe$^{3+}$ iron ions in the subarachnoid clot as well as in the adventitia of the arterial wall on days 2 and 7 after SAH. Thus, O$_2^-$ itself and subsequently generated ROS, particularly OH, are considered to play a primary role in the pathogenesis of cerebral vasospasm after SAH.

Acknowledgment

This work was supported in part by grants from the Ministry of Education, Science, and Culture, Japan.

References

28. Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA. Apparent hydroxyl radical production by peroxynitrate: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci USA. 1990;87:1620–1624.

Intracisternal Increase of Superoxide Anion Production in a Canine Subarachnoid Hemorrhage Model
Takashi Mori, Kazuya Nagata, Terrence Town, Jun Tan, Toru Matsui and Takao Asano

Stroke. 2001;32:636-642
doi: 10.1161/01.STR.32.3.636
Stroke is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2001 American Heart Association, Inc. All rights reserved.
Print ISSN: 0039-2499. Online ISSN: 1524-4628

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://stroke.ahajournals.org/content/32/3/636

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Stroke can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Stroke is online at:
http://stroke.ahajournals.org//subscriptions/